首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A flow injection on-line sorption preconcentration method for the electrothermal AAS determination of platinum has been developed. The pyrrolidine dithiocarbamate complexes of either Pt4+ or Pt2+, formed in 0.7 mol L–1 HNO3, are on-line adsorbed on the inner walls of a PTFE knotted reactor and subsequently eluted with methanol. An enhancement factor of 112 and a detection limit (3 σ) of 10 ng L–1 along with a sampling frequency of 21 h–1 are achieved with a 90 s preconcentration time at a sample flow rate of 8.8 mL min–1. The relative standard deviation is 2.5% for 0.4 μg L–1 Pt. The method has been applied to the determination of platinum in blood samples.  相似文献   

2.
A minicolumn packed with poly(aminophosphonic acid) chelating resin incorporated in an on-line preconcentration system for flame atomic-absorption spectrometry was used to determine ultratrace amounts of lead in mussel samples at μg L–1 level. The preconcentrated lead was eluted with hydrochloric acid and injected directly into the nebulizer for atomization in an air-acetylene flame for measurement. The performance characteristics of the determination of lead were: preconcentration factor 26.8 for 1 min preconcentration time, detection limit (3σ) in the sample digest was 0.25 μg g–1 (dry weight) for a sample volume of 3.5 mL and 0.2 g sample (preconcentration time 1 min), precision (RSD) 2.3% for 25 μg L–1 and 2.0% for 50 μg L–1. The sampling frequency was 45 h–1. The method was highly tolerant of interferences, and the results obtained for the determination of lead in a reference material testify to the applicability of the proposed procedure to the determination of lead at ultratrace level in biological materials such as mussel samples. Received: 1 November 2000 / Revised: 8 January 2001/ Accepted: 11 January 2001  相似文献   

3.
A flow injection system was developed for on-line sorbent extraction preconcentration and flame atomic absorption spectrometric determination of cadmium in natural water samples. The non-charged cadmium complex with diethyl-dithiophosphate (DDPA) was formed on-line in 0.1 mol L−1 HNO3 and retained on the hydrophobic poly-chlorotrifluoroethylene (PCTFE) sorbent material. The adsorbed complex was eluted with isobutyl methylketone (IBMK) and injected directly into the nebulizer via a flow compensation unit. All major chemical and flow parameters affecting the complex formation adsorption and elution as well as interference were studied and optimized. By processing 2.4 mL of sample, the enhancement factor was 39 and the sampling frequency was 50 h−1. For 30 s preconcentration time the detection limit was 0.3 μg L−1 and the relative standard deviation at 5.0 μg L−1 Cd concentration level was 2.9%. The calibration curve was linear in the range 0.8–40.0 μg L−1. The accuracy of the method was estimated by analyzing a certified reference material NIST-CRM 1643d (Trace elements in water). Good recoveries were obtained for spiked natural-water and waste-water samples. Correspondence: Aristidis N. Anthemidis, Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, GR-Thessaloniki 54124, Greece  相似文献   

4.
A two-step procedure including appropriate wet-digestions, separation of selenium from interfering ions such as heavy metal ions with pentyl alcohol and anodic stripping voltammetric (ASV) determination of Pb2+, Cu2+ and SeO3 2– is developed. The elements in digested whole blood and serum sample solutions were determined by using a standard addition method. 1 × 10–9 mol/L SeO2– 3, Cu2+ and Pb2+ were successfully determined with relative standard deviations of approximately 1–2% (n = 6–8). Received: 19 August 1996 / Revised: 24 February 1997 / Accepted: 28 February 1997  相似文献   

5.
A multi-pumping flow system for the spectrophotometric determination of nitrite and nitrate is described. The determination of nitrite is based on the Griess-Ilosvay reaction. Nitrate can be determined after its on-line reduction to nitrite using hydrazine sulphate in alkaline medium. Calibration was linear up to 3 mg NO2 L−1 with a limit of detection (3sb/S) of 0.013 mg NO2 L−1 an injection throughput of 55 injections h−1 and a repeatability (RSD) of 0.5% for the direct determination of nitrite. Two calibration graphs within the ranges 0.039–7 mg NO3 L−1 and 0.026–5 mg NO2 L−1 were run for the determination of nitrate and nitrite under reducing conditions, respectively. A limit of detection of 0.039 mg NO3 L−1 was obtained. An injection throughput of 27 injections h−1 and an RSD lower than 1.5% were achieved. The method was successfully applied to the determination of nitrite and nitrate in water samples. Correspondence: Víctor Cerdà, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa Km7.5, 07122 Palma de Mallorca, Spain  相似文献   

6.
In this work, the hyphenation of the multisyringe flow injection analysis technique with a 100-cm-long pathlength liquid core waveguide has been accomplished. The Cl/Hg(SCN)2/Fe3+ reaction system for the spectrophotometric determination of chloride (Cl) in waters was used as chemical model. As a result, this classic analytical methodology has been improved, minimizing dramatically the consumption of reagents, in particular, that of the highly biotoxic chemical Hg(SCN)2. The proposed method features a linear dynamic range composed of two steps between (1) 0.2–2 and (2) 2–8 mg Cl L−1, thus extended applicability due to on-line sample dilution (up to 400 mg Cl L−1). It also presents improved limits of detection and quantification of 0.06 and 0.20 mg Cl L−1, respectively. The coefficient of variation and the injection throughput were 1.3% (n = 10, 2 mg Cl L−1) and 21 h−1. Furthermore, a very low consumption of reagents per Cl determination of 0.2 μg Hg(II) and 28 μg Fe3+ has been achieved. The method was successfully applied to the determination of Cl in different types of water samples. Finally, the proposed system is critically compared from a green analytical chemistry point of view against other flow systems for the same purpose.  相似文献   

7.
A new and efficient Hg(II) back-elution method for the desorption of Cd, Cu, and Pb from Chelex-100 chelating resin was developed. A smaller eluent volume and shorter elution time can be achieved using an Hg(II) containing eluent rather than pure nitric acid. Owing to the remaining Hg(II) ion in the effluent, a mercury thin-film electrode is formed in-situ during the anodic stripping voltammetric determination without any further addition of Hg(II). The results indicate that all the analytes in seawater matrix can be completely adsorbed on Chelex-100 resin from the sample at pH 6.5, and subsequently eluted from the resin with an acid solution of 5 × 10–4 mol/L Hg2+ + 1 mol/L HClO4. The detection limits obtained from the differential-pulse anodic (μg L–1 to ng L–1) stripping voltammetry are at sub-ppb to ppt (μg L–1 to ng L–1) levels permitting to determine Cd, Cu and Pb traces in seawater. The analytical reliability was confirmed by the analysis of the certified reference material CASS-II (open ocean seawater). Received: 22 April 1997 / Revised: 5 August 1997 / Accepted: 7 August 1997  相似文献   

8.
Polychlorotrifluoroethylene (PCTFE) in the form of beads was applied, as packing material for flow injection on-line column preconcentration and separation systems coupled with flame atomic absorption spectrometry (FAAS). Its performance characteristics were evaluated for trace copper determination in environmental samples. The on-line formed complex of metal with diethyldithiophosphate (DDPA) was sorbed on the PCTFE surface. Isobutyl methyl ketone (IBMK) at a flow rate of 2.8 mL min−1 was used to elute the analyte complex directly into the nebulizer-burner system of spectrophotometer. The proposed sorbent material reveal, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates up to 15 mL min−1 without loss of retention efficiency. For copper determination, with 90 s preconcentration time the sample frequency was 30 h−1, the enhancement factor was 250, which could be further improved by increasing the loading (preconcentration) time. The detection limit (3s) was cL = 0.07 μg L−1, and the precision (R.S.D.) was 1.8%, at the 2.0 μg L−1 Cu(II) level. For lead determination, the detection limit was cL = 2.7 μg L−1, and the precision (R.S.D.) 2.2%, at the 40.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials and by recovery measurements on spiked natural water samples.  相似文献   

9.
A flow injection system incorporating an alumina microcolumn has been coupled to inductively coupled plasma mass spectrometry (ICP-MS) for on-line preconcentration and determination of platinum (IV) in natural waters. Depending on the nature of the sample, a nominal preconcentration factor of up to 600 can be achieved by eluting with 50l of 2 mol/l NH4OH. The limit of detection after a 5 min preconcentration time was 4 ngl-1, with a relative standard deviation of 4% (100 ngl-1 working solution). The proposed method was assessed for the determination of platinum (IV) in natural waters, motor car exhaust and some common analytical reagents.  相似文献   

10.
A new, simple, selective and sensitive method for the spectrophotometric determination of antimony in rain water is described. It includes preconcentrating Sb with surfactants (i.e. cetylpyridinium chloride (CPC) and Triton X-100 (TX-100)) into toluene and allowing the extract to react with a dye, i.e. brilliant green (BG). The value of apparent molar absorptivity is 5.55 × 105 L-mol–1· cm–1 at λmax = 620 nm; the detection limit is 3 ng/mL Sb in rain water at 3-fold preconcentration. Received: 6 June 1997 / Revised: 1 August 1997 / Accepted: 5 August 1997  相似文献   

11.
A flow injection on-line coprecipitation preconcentration system with diethyldithiocarbamate (DDTC) chelate of copper used as the coprecipitate carrier was coupled with flame atomic absorption spectrometry (FAAS) for the determination of trace silver. Silver was on-line coprecipitated with DDTC-Cu(II) in 0.5 moL · L−1HCl, and the precipitate was collected in a knotted reactor. The precipitate was then dissolved by isobutyl methyl ketone and transported directly into the nebulizer–burner system of a flame atomic absorption spectrometer. A detection limit (3ς) of 0.6 μg · L−1was achieved for a loading period of 30 s, a relative standard derivation of 2.0% was obtained for 11 determinations of 20 μg · L−1Ag(I). Interference-free levels were 10 mg · L−1for Cd2+, 50 mg · L−1for Cu2+, 50 mg · L−1for Mn2+, 25 mg · L−1for Ni2+, 100 mg · L−1for Pb2+, 50 mg · L−1for Zn2+, 500 mg · L−1for Fe3+, and 2000 mg · L−1for Fe2+reduced from Fe3+by ascorbic acid. The developed method has been successfully applied to the determination of trace amount of silver in geological samples.  相似文献   

12.
A continuous flow atomic absorption spectrometric system was used to develop an efficient on-line preconcentration-elution procedure for the determination of iodide traces. Chromium (VI) is introduced into the flow system and is reduced to chromium (III) in acid medium proportionally to the iodide present in the sample. The Cr(III) reduced by iodide is retained on a minicolumn packed with a poly(aminophosphonic acid) chelating resin, while unreduced Cr(VI) is not retained. Reduced Cr(III) is preconcentrated by passing the sample containing iodide through the system during 3 min, and is then eluted with 0.5 mol L–1 hydrochloric acid and determined by flame atomic absorption spectrometry (FAAS). The detection limit (3σ) obtained is 2.5 μg L–1. Other ions typically present in waters do not interfere. The proposed method allows the determination of iodide in the range 6–220 μg L–1 with a relative standard deviation of 2.7% at a rate of 17 samples h–1. The method has been applied to the determination of iodide in tap and sea waters. Received: 16 September 1999 / Revised: 15 November 1999 / Accepted: 19 November 1999  相似文献   

13.
An integrated solid-phase spectrophotometry–FIA method is proposed for simultaneous determination of the mixture of saccharin (1,2-benzisothiazol-3(2H)-one-1,1-dioxide; E-954) (SA) and aspartame (N-l-α-aspartyl-l-phenylalanine-1-methyl ester; E-951) (AS). The procedure is based on on-line preconcentration of AS on a C18 silica gel minicolumn and separation from SA, followed by measurement, at λ=210 nm, of the absorbance of SA which is transiently retained on the adsorbent Sephadex G-25 placed in the flow-through cell of a monochannel FIA setup using pH 3.0 orthophosphoric acid–dihydrogen phosphate buffer, 3.75×10–3 mol L−1, as carrier. Subsequent desorption of AS with methanol enables its determination at λ=205 nm. With a sampling frequency of 10 h−1, the applicable concentration range, the detection limit, and the relative standard deviation were from 1.0 to 200.0 μg mL−1, 0.30 μg mL−1, and 1.0% (80 μg mL−1, n=10), respectively, for SA and from 10.0 to 200.0 μg mL−1, 1.4 μg mL−1, and 1.6% (100 μg mL−1, n=10) for AS. The method was used to determine the amounts of aspartame and saccharin in sweets and drinks. Recovery was always between 99 and 101%. The method enabled satisfactory determination of blends of SA and AS in low-calorie and dietary products and the results were compared with those from an HPLC reference method.  相似文献   

14.
This study describes the design and optimisation of a field flow system for the in-situ collection and on-line determination of phosphate, nitrate and nitrite by flow injection analysis-spectrophotometry. The method is based on the initial determination of phosphate as its phosphoantimonylmolybdenum blue complex which is then oxidized on-line by nitrite and the decrease in absorbance is monitored at 880 nm. Nitrate is determined as the difference between total and initial nitrite content in a separate flow after reduction to nitrite in a cadmium reductive column. The calibration curves were linear in the range 0–2.00 mg L−1 P-phosphate, 0–10.00 mg L−1 nitrite and 0–7.00 mg L−1 nitrate with correlation coefficients of 0.9979, 0.9993 and 0.9995, respectively. The detection limits, calculated as 3S/N, were 0.15 mg L−1 for P-phosphate, 0.17 mg L−1 for nitrite and 0.09 mg L−1 for nitrate. The reproducibility was below 3.0% (n = 7). Method validation in the analysis of natural water and wastewater samples revealed that it can efficiently be applied to the determination of the target analytes, with recoveries in the range of 92–108%. Correspondence: Athanasios G. Vlessidis, Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece  相似文献   

15.
In this study a method for the determination of low concentrations of silver in waters using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry (FAAS) was developed. Moringa oleifera seeds were used as a biosorbent material. Chemical and flow variables of the on-line preconcentration system such as sample pH and flow rate, preconcentration time, eluent concentration and sorbent mass were studied. The optimum preconcentration conditions were obtained using sample pH in the range of 6.0-8.0, preconcentration time of 4 min at a flow rate of 3.5 mL min− 1, 0.5 mol L− 1 HNO3 eluent at a flow rate of 4.5 mL min− 1 and 35 mg of sorbent mass. With the optimized conditions, the preconcentration factor, precision, detection limit and sample throughput were estimated as 35 (for preconcentration of 14 mL sample), 3.8% (5.0 μg L− 1, n = 7), 0.22 μg L− 1 and 12 samples per hour, respectively. The developed method was successfully applied to mineral water and tap water, and accuracy was assessed through analysis of a certified reference material for water (APS-1071 NIST) and recovery tests, with recovery ranging from 94 to 101%.  相似文献   

16.
A novel ion imprinted polyvinylimidazole-silica hybrid copolymer (IIHC) was synthesized and used as a selective solid sorbent for Pb2+ ions preconcentration using an on-line solid phase extraction (SPE) system coupled to TS-FF-AAS. The ionic hybrid sorbent was prepared using 1-vinylimidazole and 3-(trimethoxysilyl)propylmethacrylate as monomers, Pb2+ ions as template, tetraethoxysilane as reticulating agent and 2,2′-azobis-isobutyronitrile as initiator. The best on-line SPE conditions concerning sorption behavior, including sample pH (6.46), buffer concentration (9.0 mmol L−1), eluent (HNO3) concentration (0.5 mol L−1) and preconcentration flow rate (4.0 mL min−1), were optimized by means of full factorial design and Doehlert matrix. The analytical curve ranged from 2.5 to 65.0 μg L−1 (r = 0.999) with limit of detection of 0.75 μg L−1; the precision (repeatability) calculated as relative standard deviation (n = 10) was 5.0 and 3.6% for Pb2+ concentration of 10.0 and 60.0 μg L−1, respectively. From on-line breakthrough curve, column capacity was 3.5 mg g−1. Preconcentration factor (PF), consumptive index (CI) and concentration efficiency (CE) were 128.0, 0.16 mL and 25.6 min−1, respectively. The selective performance of the sorbent, based on relative selectivity coefficient, was compared to NIC (non imprinted copolymer) for the binary mixture Pb2+/Cd2+, Pb2+/Cu2+ and Pb2+/Zn2+. The results showed that ion imprinted polyvinylimidazole-silica hybrid polymer had higher selectivity for Pb2+ than NIC at 64.9, 16.0 and 8.8 folds. The developed method was successfully applied for highly sensitive and selective Pb2+ determination in different kinds of water samples, parenteral solutions and urine. Accuracy was also assessed by analyzing certified reference fish protein (DORM-3) and marine sediment (MESS-3 and PACS-2) with satisfactory results.  相似文献   

17.
The suitability of 1-nitroso-2-naphthol as a complexing agent for on-line preconcentration of copper using RP-C18 material in a microcolumn with flow injection coupled with flame atomic absorption spectrometry (FI-FAAS) has been tested. Various parameters affecting complex formation, such as pH, sample flow rate, etc. and its elution into the nebulizer of FAAS were optimized. ?A 5 × 10–3 mol/L reagent was on-line mixed with aqueous sample solution acidified with 0.1% (v/v) nitric acid ?(pH 3–4) and flowed through the microcolumn for 30 s. The adsorbed complexes in the microcolumn were eluted with ethanol in 10 s into the nebulizer of FAAS. A good precision (1.7% for 50 μg/L copper, n = 12), high enrichment factor (19) with detection limit (3σ) 2.0 μg/L, and sample throughput (90 h–1) were obtained. The method was applied to certified reference materials seawater, mussel (biological), NBS-362 and NBS-364 (special low alloy steel), for the determination of copper, and the results were in good agreement with the certified values. Received: 4 May 1999 / Revised: 25 June 1999 / Accepted: 29 June 1999  相似文献   

18.
A procedure was developed for the preconcentration and determination of aluminium and copper in dialysis concentrates at the ng cm–3 level. The preconcentration was achieved on microcolumns filled with Chelex-100 resin adjusted to a pH of 4.0. Five repetitive cycles of the sample through the column ensured a sufficient contact time for quantitative retention of aluminium and copper ions. The retained ions were eluted with HNO3 (0.5 mol dm–3). Aluminium and copper were determined in the eluate by Zeeman ETAAS using the standard addition technique. The procedure was performed under clean room conditions (class 10,000), The reliability of the results was evaluated by recovery tests, using dialysis concentrates spiked with aluminium and copper. The recoveries obtained ranged from 86 to 106% for aluminium and from 92 to 97% for copper. Using the recommended procedure, the LOD of aluminium and copper in dialysis concentrates (preconcentration factor 2) was found to be 0.5 ng cm–3 and 0.2 ng cm–3, respectively. Received: 19 December 1997 / Revised: 10 March 1998 / Accepted: 28 March 1998  相似文献   

19.
A procedure was developed for the preconcentration and determination of aluminium and copper in dialysis concentrates at the ng cm–3 level. The preconcentration was achieved on microcolumns filled with Chelex-100 resin adjusted to a pH of 4.0. Five repetitive cycles of the sample through the column ensured a sufficient contact time for quantitative retention of aluminium and copper ions. The retained ions were eluted with HNO3 (0.5 mol dm–3). Aluminium and copper were determined in the eluate by Zeeman ETAAS using the standard addition technique. The procedure was performed under clean room conditions (class 10,000), The reliability of the results was evaluated by recovery tests, using dialysis concentrates spiked with aluminium and copper. The recoveries obtained ranged from 86 to 106% for aluminium and from 92 to 97% for copper. Using the recommended procedure, the LOD of aluminium and copper in dialysis concentrates (preconcentration factor 2) was found to be 0.5 ng cm–3 and 0.2 ng cm–3, respectively. Received: 19 December 1997 / Revised: 10 March 1998 / Accepted: 28 March 1998  相似文献   

20.
A sol-gel thiocyanatopropyl-functionalized silica sorbent was synthesized and employed for an automated on-line microcolumn preconcentration platform as a front-end to inductively coupled plasma atomic emission spectroscopy (ICP-AES) for the simultaneous determination of Cd(II), Pb(II), Cu(II), Cr(III), Co(II), Ni(II), Zn(II), Mn(II), Hg(II), and V(II). The developed system is based on an easy-to-repack microcolumn construction integrated into a flow injection manifold coupled directly to ICP-AES’s nebulizer. After on-line extraction/preconcentration of the target analyte onto the surface of the sorbent, successive elution with 1.0 mol L−1 HNO3 was performed. All main chemical and hydrodynamic factors affecting the effectiveness of the system were thoroughly investigated and optimized. Under optimized experimental conditions, for 60 s preconcentration time, the enhancement factor achieved for the target analytes was between 31 to 53. The limits of detection varied in the range of 0.05 to 0.24 μg L−1, while the limits of quantification ranged from 0.17 to 0.79 μg L−1. The precision of the method was expressed in terms of relative standard deviation (RSD%) and was less than 7.9%. Furthermore, good method accuracy was observed by analyzing three certified reference materials. The proposed method was also successfully employed for the analysis of environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号