首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of background currents is offered in the examples of barotropic and baroclinic quasigeostrophic models. The background currents are characterized by constant value of potential vorticity, which minimize the energy of a system. Hamiltonian character of motion equations of fluid particles allows to apply such models to study chaotic advection.  相似文献   

2.
This paper reviews some aspects of topography effects on the dynamics of barotropic monopolar, dipolar and tripolar vortices in a rotating fluid. It is shown that the modulated point-vortex model (essentially based on conservation of potential vorticity) is capable of describing the flow evolution correctly, as can be concluded from comparisons with numerical simulations and laboratory observations.
Sommario In questo articolo sono passati in rassegna alcuni aspetti degli effetti topografici nella dinamica dei vortici barotropici, monopolari, dipolari e tripolari in un fluido rotante. Si osserva che il modello di vortice puntiforme modulato (essenzialmente basato sulla conservazione della vorticità potenziale) è capace di descrivere correttamente l'evoluzione del flusso, come si può concludere dal paragone con simulazioni numeriche ed osservazioni di laboratorio.
  相似文献   

3.
In data assimilation, information from sensors is used to correct the state variables of a numerical model. This has been used to great advantage by the weather prediction community in the context of direct numerical simulation (DNS) models, but has seen comparatively little use in point-vortex models. This is due in large part to data-processing issues. In order to keep up with the speeds necessary for effective data assimilation, one must extract and discretize the vortex structures from velocity field data in a computationally efficient fashion—i.e., using as few discrete vortices as possible to model the measured flow. This paper describes a new strategy for accomplishing this and evaluates the results using data from a laboratory-scale vortex-dominated planar jet. Large-scale vortex structures are found using a family of variants on traditional vortex extraction methods. By augmenting these methods with simple computational topology techniques, one obtains a new method that finds the boundaries of the coherent structures in a manner that naturally follows the geometry of the flow. This strategy was evaluated in the context of two standard vortex extraction methods, vorticity thresholding and Okubo–Weiss, and tested upon velocity field data from the experimental fluid flow. The large-scale structures found in this manner were then modeled with collections of discrete vortices, and the effects of the grain size of the discretization and the parameters of the discrete vortex model were studied. The results were evaluated by comparing the instantaneous velocity field induced by the discrete vortices to that measured in the jet. These comparisons showed that the two extraction techniques were comparable in terms of sensitivity and error, suggesting that the computationally simpler vorticity thresholding method is more appropriate for applications where speed is an issue, like data assimilation. Comparisons of different discretization strategies showed that modeling each large-scale vortex structure with a single discrete vortex provided the best compromise between mean-squared error and computational effort. These results are of potential interest in any situation where one must balance accuracy and expense while extracting vortices from a snapshot of a flow field; data assimilation is only one example.  相似文献   

4.
The unsteady shallow-water equations for barotropic/baroclinic (free-surface/density-stratified) flows with non-linear coupling of density transport and momentum are solved using a family of two-time-level, semi-implicit predictor–corrector methods (PC2). The PC2 methods are a general family that includes the popular TRIM method for hydrostatic flows. PC2 is characterised by four ‘θ’ parameters controlling the time ‘n’ and ‘n + 1’ weighting of (1) free surface gradient, (2) predictor step, (3) baroclinic gradient and (4) density temporal interpolation. Stability of the non-linear coupling between momentum and density transport for PC2 is examined in the inviscid limit. Central difference and quadratic (QUICK) spatial interpolation for density are compared. Second-order temporal accuracy for both barotropic and baroclinic flows is simultaneously obtained with appropriate θ parameters, which has previously been shown to be impractical for TRIM. The 2nd-order PC2 method has near-neutral non-linear stability (slightly positive amplification factor) where linear theory predicts exactly neutral stability. QUICK is shown to be preferable to central difference spatial discretisation to reduce the amplification factor. Adjusting the baroclinic weighting or adding small artificial viscosities can stabilise the model for non-linear internal wave simulations.  相似文献   

5.
Statistic features of a vortex street formed by instability of a jet are investigated by numerical calculation and statistic theory. A formation process of a vortex street is numerically calculated using a simple barotropic quasi-geostrophic system: a jet in the initial state begins to meander owing to its instability and vortices are formed in both flanks of the jet and become a steady vortex street. Statistic theory of vorticity mixing for two-dimensional fluid, which describes the statistically steady equilibrium state based on the maximum entropy assumption, is applied to the numerically obtained features of the steady vortex street. The theoretically derived relation between stream function and potential vorticity explains the results in the numerical calculation very well. However, in the numerical calculation, there remain regions where the fluid is not mixed well. By calculating mixing process of another scalar, the unmixed region is clearly shown on the physical plane.  相似文献   

6.
High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2–3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.  相似文献   

7.
The basic laws governing the interaction of a two-dimensional vortex pair with a shear layer of constant thickness are considered. The main idea of the study is to develop and adapt a simplified representation of a hydrodynamic flow based on a point-vortex model simulating the actual interaction of full-scale vortex patterns over the ground surface. It is shown that vortices with vorticity opposite in sign to the shear layer may stop or even ricochet from this layer, while the other vortex may penetrate through the layer. Numerical results are presented as plots and analyzed  相似文献   

8.
We determine stationary states and examine dynamic mergers of isolated piecewise constant regions of potential vorticity in a two-layer quasigeostrophic model. We focus on the behavior of the critical initial separation distance for merger, dc, as a function of γ−1 (inverse Rossby radius) and δ, the ration of layer depths.  相似文献   

9.
Numerical simulations of the collision between deep topographically-steered anticyclonic eddies and seamounts are described. The simulations are based on a two-layer intermediate length-scale model which filters out barotropic processes and focuses on the sub-inertial baroclinic dynamics within the context of allowing finite-amplitude height variations in the deep cold eddies and a background topographic vorticity gradient.  相似文献   

10.
《Applied Scientific Research》1996,57(3-4):279-290
This paper presents a new technique to produce controlled stretched vortices. Intense elliptical vortices are created by stretching of an initial vorticity sheet. The initial vorticity comes from a laminar boundary layer flow and the stretching is parallel to the vorticity vectors. This low velocity flow enables direct observation of the formation and destabilization of vortices. Visualizations are combined with quasi-instantaneous measurements of a full velocity profile. The velocity profile is obtained with an ultrasonic pulsed Doppler velocimeter. The evolution of the central diameter of the vortices is related to the stretching. It is observed that destabilization occurs by pairing of two vortices, by hairpin deformation, and by breakdown of vortices into a “coil shape”.  相似文献   

11.
The effects of Rossby wave–turbulence interactions on particle dispersion are investigated in a Lagrangian analysis of the potential vorticity equation. The analysis produces several exact statistical results for fluid particle dispersion in barotropic turbulence on a β-plane. In the inviscid problem the first integral time scale of the meridional velocity is found to be zero, as might occur in pure wave processes, and the meridional particle dispersion is bounded. The second integral time scale, which determines the magnitude of the bound, is shown to depend explicitly on β, the enstrophy and the energy of the meridional velocity. Expressions relating the autocorrelation of the vorticity to the autocorrelation of the meridional velocity are derived and the Lagrangian integral time scale of the relative vorticity is diagnostically related to the meridional velocity correlation. The applicability of these predictions is verified in a series of numerical simulations. For a range of β values, the meridional extent of quasisteady alternating zonally averaged jets occurring in the numerical solutions scales with a length scale given by the the standard deviation of the meridional particle dispersion. Received 8 March 1999 and accepted 12 December 1999  相似文献   

12.
A method is proposed for the study of the two-dimensional coupled motion of a general sharp-edged solid body and a surrounding inviscid flow. The formation of vorticity at the body’s edges is accounted for by the shedding at each corner of point vortices whose intensity is adjusted at each time step to satisfy the regularity condition on the flow at the generating corner. The irreversible nature of vortex shedding is included in the model by requiring the vortices’ intensity to vary monotonically in time. A conservation of linear momentum argument is provided for the equation of motion of these point vortices (Brown–Michael equation). The forces and torques applied on the solid body are computed as explicit functions of the solid body velocity and the vortices’ position and intensity, thereby providing an explicit formulation of the vortex–solid coupled problem as a set of non-linear ordinary differential equations. The example of a falling card in a fluid initially at rest is then studied using this method. The stability of broadside-on fall is analysed and the shedding of vorticity from both plate edges is shown to destabilize this position, consistent with experimental studies and numerical simulations of this problem. The reduced-order representation of the fluid motion in terms of point vortices is used to understand the physical origin of this destabilization.   相似文献   

13.
A review of the theory of quasigeostrophic singular vortices embedded in regular flows is presented with emphasis on recent results. The equations governing the joint evolution of singular vortices and regular flow, and the conservation laws (integrals) yielded by these equations are presented. Using these integrals, we prove the nonlinear stability of a vortex pair on the f-plane with respect to any small regular perturbation with finite energy and enstrophy. On the β-plane, a new exact steady-state solution is presented, a hybrid regular-singular modon comprised of a singular vortex and a localized regular component. The unsteady drift of an individual singular β-plane vortex confined to one layer of a two-layer fluid is considered. Analysis of the β-gyres shows that the vortex trajectory is similar to that of a barotropic monopole on the β-plane. Non-stationary behavior of a dipole interacting with a radial flow produced by a point source in a 2D fluid is examined. The dipole always survives after collision with the source and accelerates (decelerates) in a convergent (divergent) radial flow.  相似文献   

14.
Equilibrium statistical mechanics is used for describing two-dimensional vortices in an unbounded incompressible ideal fluid. Both the energy and angular momentum integrals and a set of invariants are taken into account. The latter follows from the condition that any vorticity distribution can be obtained from an initial distribution by a differentiable areas-preserving transformation. The equations for the statistically equilibrium vorticity and passive admixture distributions are derived. It is argued that taking subsidiary invariants into account weakens the arbitrariness associated with the choice of a finite-dimensional approximation of the flow. The case in which the vorticity cloud behaves like a thermodynamic system undergoing an ordering phase transition is discussed.Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 47–55, September–October, 1995.  相似文献   

15.
We propose a non-oscillatory balanced numerical scheme for a simplified tropical climate model with a crude vertical resolution, reduced to the barotropic and the first baroclinic modes. The two modes exchange energy through highly nonlinear interaction terms. We consider a periodic channel domain, oriented zonally and centered around the equator and adopt a fractional stepping–splitting strategy, for the governing system of equations, dividing it into three natural pieces which independently preserve energy. We obtain a scheme which preserves geostrophic steady states with minimal ad hoc dissipation by using state of the art numerical methods for each piece: The f-wave algorithm for conservation laws with varying flux functions and source terms of Bale et al. (2002) for the advected baroclinic waves and the Riemann solver-free non-oscillatory central scheme of Levy and Tadmor (1997) for the barotropic-dispersive waves. Unlike the traditional use of a time splitting procedure for conservation laws with source terms (here, the Coriolis forces), the class of balanced schemes to which the f-wave algorithm belongs are able to preserve exactly, to the machine precision, hydrostatic (geostrophic) numerical-steady states. The interaction terms are gathered into a single second order accurate predictor-corrector scheme to minimize energy leakage. Validation tests utilizing known exact solutions consisting of baroclinic Kelvin, Yanai, and equatorial Rossby waves and barotropic Rossby wave packets are given.  相似文献   

16.
Dynamics of hairpin vortices generated by a mixing tab in a channel flow   总被引:3,自引:0,他引:3  
To better understand mixing by hairpin vortices, time-series particle image velocimetry (PIV) was applied to the wake of a trapezoidal-shaped passive mixing tab mounted at the bottom of a square turbulent channel (Re h =2,080 based on the tab height). Instantaneous velocity/vorticity fields were obtained in sequences of 10 Hz in the tab wake in the center plane (xy) and in a plane (xz) parallel to the wall. Periodically-shed hairpin vortices were clearly identified and seen to rise as they advected downstream. Experimental evidence shows that the vortex-induced ejection of the near-wall viscous fluid to the immediate upstream is important to the dynamics of hairpin vortices. It can increase the strength of the hairpin vortices in the near tab region and cause generation of secondary hairpin vortices further downstream when the hairpin heads are farther away from the wall. Measurements also reveal the existence of a type of new secondary vortice with the opposite-sign spanwise vorticity. The distribution of vortex loci in the xy plane shows that the hairpin vortices and the reverse vortices are spatially segregated in distinct layers. Turbulence statistics, including mean velocity profiles, Reynolds stresses, and turbulent kinetic energy dissipation rate distributions, were obtained from the PIV data. These statistical quantities clearly reveal imprints of the identified vortex structures and provide insight into mixing effectiveness. Received: 24 February 2000/Accepted: 24 October 2000  相似文献   

17.
Recent studies have shown differences in the behaviour of cyclonic and anticyclonic quasi-two-dimensional vortices in laboratory experiments in a rotating fluid. In this paper, the role of dissipative effects due to bottom topography is investigated as a possible cause for the asymmetry in the spin-down of both types of vortices. The basic mechanism of Ekman friction in 2D mathematical models is the presence of a linear damping term in the vorticity equation, which produces the flow decay. Here, an extended 2D formulation including nonlinear Ekman corrections is considered. The aim is to show that nonlinear Ekman effects are responsible for the different decay of cyclonic and anticyclonic vortices, while the conventional formulation (only containing the linear friction term) predicts a symmetric decay for both cases.In order to illustrate the role of nonlinear Ekman effects, axisymmetric vortices are simulated numerically. The relatively simple structure of such vortices allows a better understanding of their evolution. The main difference in the spin-down process of cyclones and anticyclones is the decay rate, which is faster for cyclonic motion. Furthermore, it is shown that the basic mechanism for such a difference is the outward advection of fluid in cyclones and inward in anticyclones, both effects due to Ekman pumping and suction, respectively. The results derived here intend to provide a physical interpretation which could be applied for more general, non-axisymmetric structures.  相似文献   

18.
The dynamics of laminar co-rotating vortex pairs without axial flow have been recently thoroughly studied through theoretical, experimental and numerical studies, which revealed different instabilities contributing to the decay of the vortices. In this paper, the objective is to extend the analysis to the case of co-rotating vortices with axial flow at low Reynolds numbers. A high-order incompressible Navier–Stokes flow solver is used. The momentum equations are spatially discretized on a staggered mesh by finite differences and all derivatives are evaluated with 10th order compact finite difference schemes with RK-4 temporal discretization. The initial condition is a linear superposition of two co-rotating circular Batchelor vortices with q = 1. It is found that there is an initial evolution that resembles the evolution that single q = 1 vortices go through. Azimuthal disturbances grow and result in the appearance of large-scale helical sheets of vorticity. With the development of these instability waves, the axial velocity deficit is weakened. The redistribution of both angular and axial momentum between the core and the surroundings drives the vortex core to a more stable configuration, with a higher q value. After these processes, the evolution is somewhat similar to a pair of co-rotating Lamb–Oseen vortices. A three-dimensional instability develops, with a large band of unstable modes, with the most amplified mode corresponding scaling with the vortex initial separation distance. P. J. S. A. Ferreira de Sousa wishes to acknowledge the support of FCT—SFRH/BD/1129/2000 and SFRH/BPD/21778/2005.  相似文献   

19.
The article discusses the two-dimensional flow of an incompressible liquid between two infinitely close concentric spheres, due to an initial distribution of the vorticity differing from zero. The concept of point singularities (vortices, sources, and sinks) at a sphere is introduced. Equations of motion are obtained for point vortices, as well as invariants of the motion, known for the plane case [1]. The simplest case of the mutual motion of a pair of vortices is considered. Equations are obtained for the motion of point vortices at a rotating sphere. Integral invariants for the continuous distribution of the vorticity are obtained, having the dynamic sense of the total kinetic energy and the momentum of the liquid at the sphere. The effect of the topology of the sphere on the dynamics of the vorticity is noted, and a comparison is made with the plane case.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 57–65, November–December, 1977.  相似文献   

20.
A simplified model of the moist axisymmetric Hadley circulation is examined in the asymptotic limit in which surface drag is strong and the meridional wind is weak compared to the zonal wind. Our model consists of the quasi-equilibrium tropical circulation model (QTCM) equations on an axisymmetric aquaplanet equatorial beta-plane. This model includes two vertical momentum modes, one baroclinic and one barotropic. Prior studies use either continuous stratification, or a shallow water system best viewed as representing the upper troposphere. The analysis here focuses on the interaction of the baroclinic and barotropic modes, and the way in which this interaction allows the constraints on the circulation known from the fully stratified case to be satisfied in an approximate way. The dry equations, with temperature forced by Newtonian relaxation towards a prescribed radiative equilibrium, are solved first. To leading order, the resulting circulation has a zonal wind profile corresponding to uniform angular momentum at a level near the tropopause, and zero zonal surface wind, owing to the cancelation of the barotropic and baroclinic modes there. The weak surface winds are calculated from the first-order corrections. The broad features of these solutions are similar to those obtained in previous studies of the dry Hadley circulation. The moist equations are solved next, with a fixed sea surface temperature at the lower boundary and simple parameterizations of surface fluxes, deep convection, and radiative transfer. The solutions yield the structure of the barotropic and baroclinic winds, as well as the temperature and moisture fields. In addition, we derive expressions for the width and strength of the equatorial precipitating region (ITCZ) and the width of the entire Hadley circulation. The ITCZ width is on the order of a few degrees in the absence of any horizontal diffusion and is relatively insensitive to parameter variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号