首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cresol red modified glassy carbon electrode was prepared using an electrochemical method. The cyclic voltammograms of the modified electrode indicate the presence of a couple of well-defined redox peaks, and the formal potential shifts in the negative direction with increasing solution pH. The modified electrode exhibits high electrocatalytic activity toward ascorbic acid oxidation, with an overpotential of 300 mV less than that of bare glassy carbon electrodes, and drastic enhancement of the anodic currents. The calibration graph obtained by linear sweep voltammetry for ascorbic acid is linear in the range of 50∼500 µM. The electrode markedly enhances the current response of dopamine and can separate the electrochemical responses of ascorbic acid and dopamine. The separation between the anodic peak potentials of ascorbic acid and dopamine is 190 mV by cyclic voltammetry. The linear sweep voltammetric peak currents for dopamine in the presence of 2 mM ascorbic acid vary linearly with a concentration of between 10 and 100 µM.  相似文献   

2.
IntroductionThere has been a considerable interest in developing the methods to measure the secretionneurotransmitters. Electrochemical teChniques have proven to be significantly advantageous tothe biosciencesLlj. The application of ultramicroelectrodes to neuroscien.ce, which has been pioneered by Adams[2], to monitor the concentration of neurotransmitters in the central nervesystem has had a special impact. Several neurotransmitters, e. g., dopamine(DA) are electroactlve and therefore can …  相似文献   

3.
电催化是化学修饰电极研究的中心课题之一,血红素是一种重要的铁卟啉化合物,其中的铁原子能够以两种价态存在.我们采用循环伏安法将血红素修饰于电极表面,得到了氧化还原体(redox)型化学修饰电极,并用于儿茶酚类化合物和抗坏血酸的电催化氧化研究.采用伏安法...  相似文献   

4.
Copper complex dye (C.I. Direct Blue 200) film modified electrodes have been prepared by multiple scan cyclic voltammetry. The effect of solution pH and nature of electrode material on film formation was investigated. The optimum pH for copper complex film formation on glassy carbon was found to be 1.5. The mechanism of film formation on ITO seems to be similar to that on GC surface but completely different mechanism followed with gold electrode. Cyclic voltammetric features of our modified electrodes are in consistent with a surface‐confined redox process. The voltammetric response of modified electrode was found to be depending on pH of the contacting solution. UV‐visible spectra show that the nature of copper complex dye is identical in both solution phase and after forming film on electrode. The electrocatalytic behavior of copper complex dye film modified electrode towards oxidation of dopamine, ascorbic acid and reduction of SO52? was investigated. The oxidation of dopamine and ascorbic acid occurred at less positive potential on film electrode compared to bare glassy carbon electrode. Feasibility of utilizing our modified electrode in analytical estimation of dopamine, ascorbic acid was also demonstrated.  相似文献   

5.
Simultaneous determination of a neurotransmitter, dopamine (DA), and ascorbic acid (AA) is achieved at neutral pH on a chitosan incorporating cetyltrimethylammonium bromide (CTAB) modified glassy carbon (GC) electrode. Differential pulse voltammetry (DPV) technique was used to investigate the electrochemical response of DA and AA at a glassy carbon electrode modified with chitosan incorporating CTAB. An optimum 6.0 mmol L?1 of CTAB together with 0.5 wt% of chitosan was used to improve the resolution and the determination sensitivity. In 0.1 mol L?1 aqueous phosphate buffer solution of pH 6.8, the chitosan‐CTAB modified electrode showed a good electrocatalytic response towards DA and AA. The anodic peak potential of DA shifted positively, while that of AA shifted negatively. Thus, the difference of the anodic peaks of DA and AA reached 0.23 V, which was enough to separate the two anodic peaks very well. The presented method herein could be applied to the direct simultaneous determination of DA and AA without prior treatment. The anodic peak currents (Ipa) of DPV are proportional to DA in the concentration range of 8 μM to 1000 μM, to that of AA 10 μM to 2000 μM, with correlation coefficients of 0.9930 and 0.9945, respectively. The linear range is much wider than previously reported.  相似文献   

6.
A novel route for the fabrication of neodymium hexacyanoferrate (NdHCF) modified glassy carbon electrodes (GCE) was proposed. The morphological characterization of NdHCF was examined by scanning electron microscopy (SEM) and Fourier transform infrared spectra (FTIR). The performances of the NdHCF/GCE were characterized with cyclic voltammetry and differential pulse voltammograms (DPV). The modified electrode showed excellent electrocatalytic effect and high stability toward the electrochemical oxidation of dopamine (DA) in phosphate buffer solution (pH 5.5) with a diminution of the anodic overpotential of 155 mV. The anodic peak currents increased linearly with the concentration of DA from 5.0×10?7 to 6.0×10?4 M with a detection limit of 1.0×10?8 M (S/N=3). The most important is that the modified electrode could be used for the determination of DA in the presence of an ascorbic acid concentration as large as 100‐fold that of DA. The proposed method was used to determine DA in DA‐hydrochloride injection and showed excellent sensitivity and recovery. The ease of fabrication, high stability, and low cost of the modified electrode are the promising features of the proposed sensor.  相似文献   

7.
《Electroanalysis》2006,18(23):2361-2368
The oxidation of benzophenone‐4 (2‐hydroxy‐4‐methoxybenzophenone‐5‐sulfonic acid) at glassy carbon electrode gives rise to stable redox active electropolymerized film during repetitive potential cycling between 0 to 1.3 V (Ag/AgCl). Cyclic voltammogram of poly(benzophenone‐4) film shows a redox couple with well‐defined peaks. The redox response of the modified electrode was found to be depending on the pH of the contacting solution. The peak potentials were shifted to a less positive region with increasing pH and the dependence of the peak potential was found to be 51 mV/pH. The electrocatalytic behavior of poly(benzophenone‐4) film modified electrode towards oxidation of dopamine, ascorbic acid and reduction of nitrite was investigated. The oxidation of dopamine and ascorbic acid occurred at less positive potential on poly(benzophenone‐4) film compared to bare glassy carbon electrode. For dopamine, the overpotential was reduced about 180 mV. Feasibility of utilizing poly(benzophenone‐4) film coated electrode in analytical estimation of dopamine, ascorbic acid and nitrite was also demonstrated.  相似文献   

8.
Kumar SA  Tang CF  Chen SM 《Talanta》2008,74(4):860-866
Here, we described a new method for electrochemically selective detection of dopamine (DA). In this report, for the first time, electrochemical polymerization of 4-amino-1-1'-azobenzene-3,4'-disulfonic acid (acid yellow 9 dye (AY)) was carried out onto the surface of glassy carbon (GC) electrode and indium tin oxide coated electrode (ITO) from acidic solution containing AY monomers. A polymerized film of acid yellow on the surface of a glassy carbon electrode was characterized by cyclic voltammetry (CV). The redox response of the poly(AY) film on the GC electrode showed a couple of redox peak in 0.1M sulfuric acid solution and the pH dependent peak potential was -58mV/pH which was close to the Nernst behavior. The poly(AY) film-coated GC electrode (GC/PAY) exhibited excellent electrocatalytic activity towards the oxidations of dopamine (DA) in 0.1M phosphate buffer solution (PBS, pH 7.0) and increased the anodic peak current three time higher than bare GC electrode. GC/PAY did not reduce the considerable overpotential for oxidation of DA when compare to bare GC electrode. However, in contrast to other polymer modified electrode, due to the strong negatively charged back bone of poly(AY) highly repelled the important interference of DA, such as ascorbic acid (AA), uric acid (UA) and reduced form of nicotinamide adenine dinucleotide (NADH) in 0.1M PBS (pH 7.0) and did not showed any response for oxidation of these interferences. This behavior makes the GC/PAY for selective detection of DA in the presence of higher concentrations AA, UA and NADH. Using differential pulse voltammetry the calibration curves for DA were obtained over the range of 1-100muM with good selectivity and sensitivity. The proposed method provides a simple method for selective detection of DA from its interferences.  相似文献   

9.
《Electroanalysis》2005,17(11):941-945
A glassy carbon electrode (GCE) was modified with electropolymerized films of cresol red in pH 5.6 phosphate buffer solution (PBS) by cyclic voltammetry (CV). The modified electrode shows an excellent electrocatalytic effect on the oxidation of norepinephrine (NE). The peak current increases linearly with the concentration of NE in the range of 3×10?6–3×10?5 M by the differential pulse voltammetry. The detection limit was 2×10?7 M. The modified electrode can also separate the electrochemical responses of norepinephrine and ascorbic acid (AA). The separation between the anodic peak potentials of NE and AA was 190 mV by the cyclic voltammetry. And the responses to NE and AA at the modified electrode were relatively independent.  相似文献   

10.
Sadik Cogal 《Analytical letters》2018,51(11):1666-1679
Poly(3,4-ethylenedioxythiophene) was deposited on a reduced graphene oxide-decorated glassy carbon electrode through an electrochemical polymerization. The resulting glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was applied as an electrochemical biosensor for the determination of dopamine in the presence of ascorbic acid and uric acid. The material deposited on glassy carbon electrode was investigated in terms of morphology and structural analysis. The comparison of electrochemical behavior of the glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode with the glassy carbon electrode-graphene oxide, glassy carbon electrode-reduced graphene oxide, and glassy carbon electrode-poly(3,4-ethylenedioxythiophene) electrodes exhibited high electrocatalytic activity for dopamine detection. Electrochemical kinetic parameters of glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene), including the charge transfer coefficient α (0.49) and electron transfer rate constant ks (1.04), were determined and discussed. The glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was studied for the determination of dopamine by differential pulse voltammetry and exhibited a linear range from 19.6 to 122.8?µM with a sensitivity of 3.27?µA?µM?1?cm?2 and a detection limit of 1.92?µM. The developed biosensor exhibited good selectivity toward dopamine with high reproducibility and stability.  相似文献   

11.
《Electroanalysis》2005,17(19):1740-1745
A p‐chloranil modified carbon paste electrode was constructed and the electrochemical behavior of this electrode was studied in the aqueous solution with different pH. From the E1/2–pH diagram for this compound the values of formal potential E0' and pKa of some different redox and acid‐base couples depending on the solution pH were estimated. The diffusion coefficient, D, value for p‐chloranil was estimated 1.5×10?7 cm2 s?1. It has been shown by direct current cyclic voltammetry and double potential step chronoamperometry, that this p‐chloranil incorporated carbon paste electrode, can catalyze the oxidation of ascorbic acid in the aqueous buffered solution. Under the optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such an electrode occurs at a potential about 325 mV less positive than that at an unmodified carbon past electrode. The catalytic oxidation peak currents was linearly dependent on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 7×10?5 M–4×10?3 M of ascorbic acid with a correlation coefficient of 0.9998. The limit of detection (3σ) was determined as 3.5×10 ?5 M. This method was used as simple, selective and precise voltammetric method for determination of ascorbic acid in pharmaceutical preparations.  相似文献   

12.
IntroductionDAisoneofessentialparticipantsintheneuro transmissionprocessinmammaliancentralnervoussys tem .AlossofDA containingneuronsmayresultinsomeseriousdiseasesuchasParkinsonism .1Sinceitsdiscov eryinthe 195 0s ,DAhasbeenofinteresttoneuroscien tistsandchem…  相似文献   

13.
A simple procedure was developed to prepare a glassy carbon electrode modified with multi walled carbon nanotubes (MWCNTs) and Celestin blue. Cyclic voltammograms of the modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range (2–12). The formal potential of redox couple (E′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of Celestine blue immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2. The charge transfer coefficient (α) and heterogeneous electron transfer rate constants (ks) for GC/MWCNTs/Celestine blue were 0.43 and 1.26 s?1, respectively. The modified electrode show strong catalytic effect for reduction of hydrogen peroxide and oxygen at reduced overpotential. The glucose biosensor was fabricated by covering a thin film of sol‐gel composite containing glucose oxides (GOx) on the surface of Celestine blue /MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 0.3 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. The accuracy of the biosensor for glucose detection was evaluated by detection of glucose in a serum sample, using standard addition protocol. In addition biosensor can reach 90% of steady currents in about 3.0 sec and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) was eliminated. Furthermore, the apparent Michaelis–Menten constant 2.4 mM, of GOx on the nano composite exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of glucose biosensor.  相似文献   

14.
Chromium(VI) is determined through its direct electrochemical reduction in the bulk of a porous glassy carbon electrode. An electrode filled with the acidified sample and Cr(VI) is reduced by means of a constant current whereas the potential of the electrode is monitored. The limits of detection and quantification were found to be 1.9 and 6.0 μg · L−1, resp. The linear range, repeatability and reproducibility were found to be 5–500 μg · L−1, 1.2, and 1.8%, resp. The influence of Fe(III), Ca(II), Mg(II), sulphates, nitrates, humic acids and surfactants was investigated. Total chromium was measured after chemical oxidation of Cr(III) to chromate by permanganate. The method was applied to analyses of water samples.  相似文献   

15.
Wei Chen  Jian Tang  Xing-Hua Xia 《Talanta》2009,80(2):539-360
Nickel hexacyanoferrate film modified gold electrode was prepared by a simple chemical deposition procedure from a fresh prepared solution containing ferricyanide, Ni2+, and sodium nitrate. The resultant films have solo composition and are significantly stable as compared to the electrochemically deposited NiHCF films. For different concentrations of Na+ in the solution, the formal potential values of NiHCF shift according to the Nernstian behavior with a slope of 48 mV in the range of 10−4 to 1.0 M. The NiHCF film was also used for the electrocatalytic oxidation of ascorbic acid. The anodic peak current observed in cyclic voltammetry increased with the ascorbic acid concentration. At a fixed potential under hydrodynamic conditions, the calibration plot was linear over the ascorbic acid concentration range 0.1-12 mM.  相似文献   

16.
A graphite nanosheet (GNS)‐Nafion modified glassy carbon (GC) electrode was prepared and used for highly sensitive and selective determination of dopamine (DA). The GNS‐Nafion/GC electrode displayed excellent electrocatalytic activities towards DA and ascorbic acid (AA). The selective determination of DA was carried out successfully in the presence of AA by differential pulse voltammetry. High sensitivity (3.695 μA μM?1) and low detection limit (0.02 μM, S/N=3) for the DA detection were obtained. These good properties can be attributed to a large amount of edge plane defects presented on GNSs and the charge‐exclusion and concentration features of Nafion.  相似文献   

17.
A sensitive and selective electrochemical method for the determination of dopamine using an Evans Blue polymer film modified on glassy carbon electrode was developed. The Evans blue polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of dopamine in phosphate buffer solution (pH 4.5). The linear range of 1.0 x 10(-6)-3.0 x 10(-5) M and detection limit of 2.5 x 10(-7) M were observed in pH 4.5 phosphate buffer solutions. The interference studies showed that the modified electrode exhibits excellent selectivity in the presence of large excess of ascorbic acid and uric acid. The separation of the oxidation peak potentials for dopamine-ascorbic acid and dopamine-uric acid were about 182 mV and 180 mV, respectively. The differences are large enough to determine AA, DA and UA individually and simultaneously. This work provides a simple and easy approach to selectively detect dopamine in the presence of ascorbic acid and uric acid in physiological samples.  相似文献   

18.
Poly(malachite green) film modified Nafion‐coated glassy carbon electrodes have been prepared by potentiodynamic cycling in malachite green solution. The pH of polymerisation solution has only minor effect on film formation. Electrochemical quartz crystal microbalance (EQCM) was used to monitor the growth of the poly(malachite green) film. Cyclic voltammogram of the poly(malachite green) film shows a redox couple with well‐defined peaks. The redox response of the modified electrode was found to be depending on the pH of the contacting solution. The peak potentials were shifted to a less positive region with increasing pH and the dependence of the peak potential was found to be 56 mV per pH unit. The electrocatalytic behavior of poly(malachite green) film modified Nafion‐coated glassy carbon electrodes was tested towards oxidation of NADH, dopamine, and ascorbic acid. The oxidation of dopamine and ascorbic acid occurred at less positive potential on poly(malachite green) film compared to bare glassy carbon electrode. In the case of NADH, the overpotential was reduced substantially on modified electrode. Finally, the feasibility of utilizing poly(malachite green) film electrode in analytical estimation of ascorbic acid was demonstrated in flow injection analysis.  相似文献   

19.
A glassy carbon electrode was modified with electropolymerized film of diphenylamine sulfonic acid (DPASA). Electropolymerization was performed by cyclic voltammetry in 0.1 M KCl solution. The modified electrode showed an excellent electrocatalytic effect towards oxidation of dopamine (DA) and ascorbic acid (AA). Electrostatic interaction between the negatively charged poly(DPASA) film and either cationic DA species or anionic AA species favorably contributed to the redox response of DA and AA. Anodic peaks of DA and AA in their mixture were well separated by ca 168 and −11.8 mV. The proposed modified electrode was utilized for selective determination of dopamine in the concentration range of 5.0 × 10t7–2.0 × 10−5 M in the presence of high concentration of ascorbic acid. Detection limit was 6.5 × 10−9 M.  相似文献   

20.
This work describes an electroanalytical investigation of dopamine using cyclic voltammetry (CV) and the graphite–polyurethane composite electrode (GPU). In CV studies, well-defined redox peaks characterize the oxidation process at the GPU electrode, which is indicative of electrocatalytic effects associated with active sites on the GPU electrode surface. A new analytical methodology was developed using the GPU electrode and square wave voltammetry (SWV) in BR buffer solution (0.1 mol L–1; pH 7.4). Analytical curves were constructed under optimized conditions (f=60s–1, Ea=50 mV, EI=2 mV) and detection and quantification limits of 6.4×10–8 mol L–1 (12.1 g L–1) and 5.2×10–6 mol L–1 (0.9 mg L–1), respectively, were achieved. The precision of the method was checked by performing ten successive measurements for a 9.9×10–6 mol L–1 dopamine solution. For intra-assay and inter-assay precisions, the relative standard deviations were 1.9 and 2.3%, respectively. In order to evaluate the developed methodology, the determination of dopamine was performed with good sensitivity and selectivity, without the interference of ascorbic acid in synthetic cerebrospinal fluid, which indicates that the new methodology enables reliable analysis of dopamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号