首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of olefin and paraffin namely ethane, ethylene, propane and propylene in aromatic poly(1,5-naphthalene-2,2′-bis(3,4-phthalic) hexafluoropropane) diimide (6FDA-1,5-NDA) dense membranes was investigated. The gas permeability coefficients were measured at pressures from 2.5 to 16 atm for the C2 hydrocarbon gases and pressures up to 8.4 atm for C3 systems at 35 °C. This membrane exhibits permeabilities of 0.15, 0.87, 0.023 and 0.24 Barrer with respect to pure ethane, ethylene, propane and propylene, and shows an ideal selectivity of 5.8 for the separation of ethylene/ethane, 10 for propylene/propane, 7.6 for nitrogen/ethane and 50 for nitrogen/propane. The olefins showed a preferred permeability to paraffins and discussion were drawn to the permeability, diffusivity and solubility coefficients. The activation energies of permeation, diffusion and solution were also reported and the effect of temperature on the permeation properties was discussed for the pure gas permeability data obtained from 30 to 50 °C. The plasticisation effect was also found for propane and propylene, respectively, although it was neither detected in the saturated nor unsaturated C2 hydrocarbons at pressures up to 16 atm.  相似文献   

2.
The solubility, diffusivity, and permselectivity of propylene and propane in 40 different polyimides synthesized from 2,2‐bis(3,4‐decarboxyphenyl)hexafluoropropane dianhydride (6FDA) were determined at 298 K. The influence of the chemical structures on the physical and gas permeation properties of the 6FDA‐based polyimides was studied. The solubility of propylene in an unrelaxed volume of a polymer matrix mainly contributes to the total solubility of propylene for various 6FDA‐based polyimides. The diffusivity, the permeability of propylene, and the permselectivity in the propylene/propane mixed‐gas system depend on the solubility of propylene. This is thought to be associated with the penetrant‐induced plasticization effect. 6FDA‐based polyimides, which have a high glass‐transition temperature and a large fractional free volume, exhibit a high permeability with a relatively low permselectivity. Changing the number of  CH3 substituents in the phenylene linkage and changing the connectivity in the main chain are good ways of controlling the solubility of propylene and the corresponding permselectivity in the propylene/propane mixed‐gas system. Some 6FDA‐based polyimides restrict the solubility of propylene through the introduction of a  CONH linkage between the phenylene linkage; the  Cl substituent in the phenylene linkage at the diamine moiety exhibits a high separation performance in the mixed‐gas system. The polyimides are potentially useful membrane materials for the separation of propylene and propane in the petrochemical industry. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2525–2536, 2000  相似文献   

3.
Separation of olefin/paraffin is an energy-intensive and difficult separation process in petrochemical industry. Energy-efficient adsorption process is considered as a promising alternative to the traditional cryogenic distillation for separating olefin/paraffin mixtures. In this work, we explored the feasibility of adsorptive separation of olefin/paraffin mixtures using a magnesium-based metal-organic framework, Mg-MOF-74. Adsorption equilibria and kinetics of ethane, ethylene, propane, and propylene on a Mg-MOF-74 adsorbent were determined at 278, 298, and 318 K and pressures up to 100 kPa. A dual-site Sips model was used to correlate the adsorption equilibrium data, and a micropore diffusion model was applied to extract the diffusivities from the adsorption kinetics data. A grand canonical Monte Carlo simulation was conducted to calculate the adsorption isotherms and to elucidate the adsorption mechanisms. The simulation results showed that all four adsorbate molecules are preferentially adsorbed on the open metal sites where each metal site binds one adsorbate molecule. Propylene and propane have a stronger affinity to the Mg-MOF-74 adsorbent than ethane and ethylene because of their significant dipole moments. Adsorption equilibrium selectivity, combined equilibrium and kinetic selectivity, and adsorbent selection parameter for pressure swing adsorption processes were estimated. The relatively high values of adsorption selectivity suggest that it is feasible to separate ethylene/ethane, propylene/propane, and propylene/ethylene pairs in a vacuum swing adsorption process using Mg-MOF-74 as an adsorbent.  相似文献   

4.
Synthesis and characterization of silicalite-1/carbon-graphite membranes   总被引:2,自引:0,他引:2  
Silicalite-1/carbon-graphite composite membranes have been prepared using a standard hydrothermal synthesis method and characterized by XRD, SEM, TGA, BET and permeation experiments. Single gas permeation fluxes and binary mixtures separation and selectivity data are reported for methane, ethane and propane using the composite membranes. Carbon-graphite oxidized for 4 h prior to membrane preparation had the most promising separation properties. The permeation fluxes for the binary mixtures reflect that of the single component flux ratios. At 20 degrees C the membranes show high separation selectivity toward lighter component in binary mixtures. Single gas permeances for methane and ethane were found to decrease with increasing temperatures while that of propane fluctuates.  相似文献   

5.
Ag+ was introduced into *BEA-type zeolite membrane by an ion-exchange method to enhance olefin selectivity. Ag−*BEA membrane exhibited superior olefin separation performance for both ethylene/ethane and propylene/propane mixtures. Particularly, the separation factor for ethylene at 373 K reached 57 with the ethylene permeance of 1.6×10−7 mol m−2 s−1 Pa−1. Adsorption properties of olefin and paraffin were evaluated to discuss contribution of Ag+ to separation performance enhancement. A strong interaction between olefin and Ag+ in the membrane caused preferential adsorption of olefin against paraffin, leading to selective permeation of olefin. Ag−*BEA membrane also exhibited high olefin selectivities from olefin/N2 mixtures. The affinity-based separation through Ag−*BEA membrane showed a high potential for olefin recovery and purification from various gas mixtures.  相似文献   

6.
Some potential adsorbents for ethylene/ethane separation are ethylene selective while the others are ethane selective. Among different adsorbents, i.e., zeolites and metal organic frameworks (MOFs), a comparative study is critical to find the more suitable adsorbent for the separation. In this paper, binary ethylene/ethane adsorption performances of zeolites and MOFs, i.e., equilibrium selectivities and adsorption capacities are investigated utilizing ideal adsorbed solution theory (IAST). IAST model is applied at different gas compositions (0.1–0.9 ethylene mole fractions) and pressures up to 100 kPa. The results revealed that the most selective adsorbent toward ethylene is 5A zeolite while MOFs have higher equilibrium adsorption capacities. Among zeolites and MOFs, 5A and Fe2(dobdc) have the highest selectivity (27.4 and 13.6) and capacity (≈2.8 and 5.8 mmol ethylene/g) at 100 kPa and 298 K for a 50/50 mixture. Among ethane selective adsorbents, Silicalite-1 zeolite and UTSA-33a (MOF) have the highest selectivity and capacity (≈2.9 and ≈1.5 mmol ethane/g) at 100 kPa and 298 K for a 50/50 mixture, respectively. Investigation showed that adsorption capacity of ethylene selective adsorbents is higher than that of ethane selective ones.  相似文献   

7.
Aqueous polyurethane dispersions (PUDs) with poly(dimethylsiloxane) (PDMS), or mixed poly(dimethylsiloxane)/poly(ethylene glycol) (PDMS/PEG) as the soft segment were synthesized, and made into thin films for characterization with differential scanning calorimetry (DSC), thermogarvimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), size exclusion chromatography (SEC) and transmission electron microscopy (TEM). Seven thin film composite (TFC) membranes prepared on PUDs and PVDF substrates were evaluated by the separation of air as well as hydrocarbon–nitrogen mixtures. A promising membrane was then selected for further investigation of the morphological structure and permselectivities, using pure gases and binary mixtures of ethylene, ethane, propylene and propane with nitrogen at ambient temperature. It was found that PDMS/PEG-based PU membrane was typically solubility-selective for condensable hydrocarbons, and nitrogen permeance was marginally enhanced in hydrocarbon–nitrogen mixtures. It appears that the copolymer membrane with both urethane and PEG segments can effectively tolerate the swelling caused by the condensable gases. As a result, the selectivities of propylene and propane to nitrogen were substantially improved, e.g., in a mixture containing 28% propylene and 72% nitrogen, the selectivity of propylene to nitrogen reached 29.2 with a propylene permeance of 34.4 gas permeation unit (GPU).  相似文献   

8.
Permeation of various gases (carbon dioxide, nitrous oxide, methane, nitrogen, oxygen, argon, krypton, neon) and their equimolar mixtures through DD3R membranes have been investigated over a temperature range of 220–373 K and a feed pressure of 101–400 kPa. Helium was used as sweep gas at atmospheric pressure. Adsorption isotherms were determined in the temperature range 195–298 K, and modelled by a single and dual site Langmuir model. The permeation flux is determined by the size of the molecule relative to the window opening of DD3R, and its adsorption behaviour. As a function of temperature, bulky molecules (methane) show activated permeation, weakly adsorbing molecules decreasing permeation behaviour and strongly adsorbing molecules pass through a maximum. Counter diffusion of the sweep gas (helium) ranged from almost zero up to the order of the feed gas permeation and was strongly influenced by the adsorption of the feed gas.

DD3R membranes have excellent separation performance for carbon dioxide/methane mixtures (selectivity 100–3000), exhibit good selectivity for nitrogen/methane (20–45), carbon dioxide and nitrous oxide/air (20–400), and air/krypton (5–10) and only a modest selectivity for oxygen/nitrogen (2) separation. The selectivity of mixtures of a strongly and a weakly adsorbing component decreased with increasing temperature and pressure. The selectivity of mixtures of weakly adsorbing components was independent of pressure.

The permeation and separation characteristics of light gases through DD3R membranes can be explained by taking into account: (1) steric effects introduced by the window opening of DD3R leading to molecular sieving and activated transport, (2) competitive adsorption effects, as observed for mixtures involving strongly adsorbing gases, and (3) interaction between diffusing molecules in the cages of the zeolite.  相似文献   


9.
The highly selective dry complex membrane AgBF4-cellulose acetate (CA) was prepared and tested for the separation of ethylene/ethane and propylene/propane mixtures. The maximum selectivity for olefin over paraffin was found to be 280 for the ethylene/ethane mixture and 200 for the propylene/propane mixture. Solid-state interactions of AgBF4 with cellulose acetate (CA) and/or olefins have been investigated by using FT-IR, UV, and X-ray photoelectron spectroscopy (XPS). FT-IR and XPS studies clearly show that the silver ions are coordinated by carbonyl oxygen atoms among three different types of oxygen atoms present in CA-two in the acetate group and one in the ether linkage. Upon incorporation of AgBF4 into CA, the carbonyl stretching frequency of the free cellulose acetate at 1750 cm(-1) shifts to a lower frequency by about 41 cm(-1). The binding energy corresponding to a carbonyl oxygen atom in the O 1s XPS spectrum shifts to a more positive binding energy by the incorporation of AgBF4. Reversible olefin coordination to silver ions has been observed by FT-IR and UV studies. Treatment of the AgBF4-CA membrane placed in a gas cell with propylene produces a propylene-coordinated membrane in which coordinated propylene is easily replaced by other olefins such as 1,3-butadiene.  相似文献   

10.
Exceptional high quality ZIF-8 membranes prepared through a novel seeded growth method in aqueous solutions at near room temperature exhibit excellent separation performance for C2/C3 hydrocarbon mixtures. The separation factors for mixtures of ethane/propane, ethylene/propylene and ethylene/propane are ~80, ~10 and ~167, respectively.  相似文献   

11.
Pure and mixed gas permeation experiments for olefins and paraffins of C2 and C3 were carried out for several polyimide and other polymer membranes at pressures up to 8 atm and temperatures from 308 to 423 K. The olefins were more permeable to the corresponding paraffins due to their preferential diffusion based on the difference in their molecular size. Polyimide prepared from 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 2,4,6-trimethyl-1,3-phenylenediamine (TrMPD) displayed relatively high performance: permeability coefficient to propylene, PC3H6 = 20–40 Barrer (1 Barrer = 1 × 10−10 cm3(STP)/(cm s cmHg)) and ideal separation factor (permeability ratio of pure propylene and propane). αid(C3H6/C3H8) = 11 at 323 K and 2 atm. Polyimide from 6FDA and dimethyl-3,7-diaminodiphenylthiophene-5,5-dioxide (DDBT) displayed low permeability and high permselectivity: PC3H6 = 0.8 Barrer and αid(C3H6/C3H8) = 27 at 323 K and 2 atm. Their performance was much better than that of other polymers such as poly(2,6-dimethyl-1,4-phenyleneoxide). For mixed gas permeation, the separation factor was lower by about 40% than the αid due to the increase in PC3H8 caused by coexisting propylene.  相似文献   

12.
Ethylene and propylene are the key building blocks of the chemical industry, but current processes are unable to close the growing gap between demand and manufacture. Reported herein is an exceptional europium oxychloride (EuOCl) catalyst for the selective (≥95 %) production of light olefins from ethane and propane by oxychlorination chemistry, thus achieving yields of ethylene (90 %) and propylene (40 %) unparalleled by any existing olefin production technology. Moreover, EuOCl is able to process mixtures of methane, ethane, and propane to produce the olefins, thereby reducing separation costs of the alkanes in natural gas. Finally, the EuOCl catalyst was supported on suitable carriers and evaluated in extrudate form, and preserves performance for >150 h under realistic process conditions.  相似文献   

13.
Ethylene and propylene are produced in larger quantities than any other organic compound. Production of these olefins requires separation of the olefins from the corresponding paraffins. Distillation is currently used but this is an extremely energy-intensive process due to the very low relative volatility of the components. Previous studies have shown that facilitated transport membranes can have high selectivity for olefin/paraffin separation. However, four problems have limited the commercial application of facilitated transport membranes: (i) poor mechanical stability, (ii) the difficulty in preparing thin, high-flux composite membranes, (iii) the requirement of a water-vapor-saturated feed to provide mobility for the olefin-selective carrier, and (iv) poor chemical stability due to carrier poisoning. Solid polymer electrolytes are a novel class of facilitated transport membranes for olefin/paraffin separation. These membranes solve the first three problems listed above. Solid polymer electrolyte membranes are based on rubbery, polyether-based polymers containing a dissolved olefin-complexing metal salt. Solid polymer electrolyte composite membranes made from poly(ethylene oxide) loaded with silver tetrafluoroborate showed an ethylene/ethane selectivity of up to 240 and an ethylene permeance of 8×10−6 cm3(STP)/cm2 s cmHg with a dry feed gas mixture.  相似文献   

14.
Gondal MA  Dastgeer A  Yamani ZH  Arfaj A  Ali MA 《Talanta》2003,59(2):295-302
A novel method for the study of non-oxidative methane conversion process into higher value hydrocarbon and hydrogen has been invented. The method involves the multiphoton dissociation of methane under the influence of the high power pulsed ultraviolet laser radiation at 355 nm wavelength at room temperature (293 K) and standard pressure (1 atm). The products generated as a result of methane conversion like ethane, ethylene, propane, propylene and isobutane are analyzed using an online gas chromatograph while the other species such as CH, CH2 and C2H2, atomic and molecular hydrogen are characterized by real-time laser-induced fluorescence technique for the first time. A typical 7% conversion of methane into ethane has been achieved using 80 mJ of laser irradiation at 355 nm. The important features of this method are that it is non-oxidative, does not require any catalyst, high temperatures or pressures, which is normally the case in conventional techniques for methane conversion.  相似文献   

15.
研究了在固定床反应器和膜反应器中的丙烷芳构化,考察了HZSM-5担载的Ga和Pt-Ga催化剂对反应的影响。结果表明,采用无机膜反应器可以提高丙烷芳构化选择性,从而提高芳烃收率达10%以上。在膜反应器中,低碳烷烃选择性降低,烯烃选择性增强。固定床相比,膜反应器在低温时对芳构化反应的促进作用最为显著,但是随着温度升高,其促进作用减弱。  相似文献   

16.
Raman spectroscopy has been used to investigate ethane, propane, and SF6 interactions with an aligned multiwalled carbon nanotube (MWNT) membrane. Pressures of 7.5-9.3 atm and temperatures of 293-333 K were examined for propane and SF6, whereas slightly lower temperatures (263-293 K) and pressures (6.7-7.5 atm) were used for ethane. Red-shifting and broadening is seen for the C-C stretching vibrations of the two hydrocarbons, as well as for the A1g symmetric vibration (nu1) of SF6. These spectral features indicate that the interaction between the gas and the nanotube membrane is capable of perturbing molecular vibrations and creating red-shifted features. Control experiments done on polycrystalline graphite and a polystyrene blank indicate that this spectral behavior is unique to gases interacting with the nanotubes in the membrane.  相似文献   

17.
Copper(II)-containing mordenite (CuMOR) is capable of activation of C−H bonds in C1-C3 alkanes, albeit there are remarkable differences between the functionalization of ethane and propane compared to methane. The reaction of ethane and propane with CuMOR results in the formation of ethylene and propylene, while the reaction of methane predominantly yields methanol and dimethyl ether. By combining in situ FTIR and MAS NMR spectroscopies as well as time-resolved Cu K-edge X-ray absorption spectroscopy, the reaction mechanism was derived, which differs significantly for each alkane. The formation of ethylene and propylene proceeds via oxidative dehydrogenation of the corresponding alkanes with selectivity above 95 % for ethane and above 85 % for propane. The formation of stable π-complexes of olefins with CuI sites, formed upon reduction of CuII-oxo species, protects olefins from further oxidation and/or oligomerization. This is different from methane, the activation of which proceeds via oxidative hydroxylation leading to the formation of surface methoxy species bonded to the zeolite framework. Our findings constitute one of the major steps in the direct conversion of alkanes to important commodities and open a novel research direction aiming at the selective synthesis of olefins.  相似文献   

18.
The separation of hydrocarbons (methane, ethane, propane, n-butane, ethylene, and propylene) and sulfur-containing gases (hydrogen disulfide, sulfur dioxide, carbonyl sulfide) on a new mixed stationary phase poly-(1-trimethylsilyl-1-propyne)/poly-(1-phenyl-1-propyne) in the presence of water has been studied by gas chromatography. It has been demonstrated that the new mixed stationary phase outperforms the known polymeric adsorbents and stationary phases by resolution, asymmetry factor, and column efficiency.  相似文献   

19.
《Fluid Phase Equilibria》2004,224(1):111-118
The statistical associating fluid theory (SAFT) equation of state is employed for the correlation and prediction of vapor–liquid equilibrium (VLE) of eighteen binary mixtures. These include water with methane, ethane, propane, butane, propylene, carbon dioxide, methanol, ethanol and ethylene glycol (EG), ethanol with ethane, propane, butane and propylene, methanol with methane, ethane and carbon dioxide and finally EG with methane and ethane. Moreover, vapor–liquid equilibrium for nine ternary systems was predicted. The systems are water/ethanol/alkane (ethane, propane, butane), water/ethanol/propylene, water/methanol/carbon dioxide, water/methanol/methane, water/methanol/ethane, water/EG/methane and water/EG/ethane. The results were found to be in satisfactory agreement with the experimental data except for the water/methanol/methane system for which the root mean square deviations for pressure were 60–68% when the methanol concentration in the liquid phase was 60 wt.%.  相似文献   

20.
A reducible metal–organic framework (MOF), iron(III) trimesate, denoted as MIL‐100(Fe), was investigated for the separation and purification of methane/ethane/ethylene/acetylene and an acetylene/CO2 mixtures by using sorption isotherms, breakthrough experiments, ideal adsorbed solution theory (IAST) calculations, and IR spectroscopic analysis. The MIL‐100(Fe) showed high adsorption selectivity not only for acetylene and ethylene over methane and ethane, but also for acetylene over CO2. The separation and purification of acetylene over ethylene was also possible for MIL‐100(Fe) activated at 423 K. According to the data obtained from operando IR spectroscopy, the unsaturated FeIII sites and surface OH groups are mainly responsible for the successful separation of the acetylene/ethylene mixture, whereas the unsaturated FeII sites have a detrimental effect on both separation and purification. The potential of MIL‐100(Fe) for the separation of a mixture of C2H2/CO2 was also examined by using the IAST calculations and transient breakthrough simulations. Comparing the IAST selectivity calculations of C2H2/CO2 for four MOFs selected from the literature, the selectivity with MIL‐100(Fe) was higher than those of CuBTC, ZJU‐60a, and PCP‐33, but lower than that of HOF‐3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号