首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers specific aspects of implementing an algorithm for solving problems of quadratic programming, which is based on a reduced gradient method. In the subspace of superbasis variables, minimization is carried out by a conjugate gradient method. Some examples of solving test problems are given.  相似文献   

2.
A new algorithm, the dual active set algorithm, is presented for solving a minimization problem with equality constraints and bounds on the variables. The algorithm identifies the active bound constraints by maximizing an unconstrained dual function in a finite number of iterations. Convergence of the method is established, and it is applied to convex quadratic programming. In its implementable form, the algorithm is combined with the proximal point method. A computational study of large-scale quadratic network problems compares the algorithm to a coordinate ascent method and to conjugate gradient methods for the dual problem. This study shows that combining the new algorithm with the nonlinear conjugate gradient method is particularly effective on difficult network problems from the literature.  相似文献   

3.
For solving large-scale unconstrained minimization problems, the nonlinear conjugate gradient method is welcome due to its simplicity, low storage, efficiency and nice convergence properties. Among all the methods in the framework, the conjugate gradient descent algorithm — CG_DESCENT is very popular, in which the generated directions descend automatically, and this nice property is independent of any line search used. In this paper, we generalize CG_DESCENT with two Barzilai–Borwein steplength reused cyclically. We show that the resulting algorithm owns attractive sufficient descent property and converges globally under some mild conditions. We test the proposed algorithm by using a large set of unconstrained problems with high dimensions in CUTEr library. The numerical comparisons with the state-of-the-art algorithm CG_DESCENT illustrate that the proposed method is effective, competitive, and promising.  相似文献   

4.
Many constrained sets in problems such as signal processing and optimal control can be represented as a fixed point set of a certain nonexpansive mapping, and a number of iterative algorithms have been presented for solving a convex optimization problem over a fixed point set. This paper presents a novel gradient method with a three-term conjugate gradient direction that is used to accelerate conjugate gradient methods for solving unconstrained optimization problems. It is guaranteed that the algorithm strongly converges to the solution to the problem under the standard assumptions. Numerical comparisons with the existing gradient methods demonstrate the effectiveness and fast convergence of this algorithm.  相似文献   

5.
The conjugate gradient method is a useful and powerful approach for solving large-scale minimization problems. Liu and Storey developed a conjugate gradient method, which has good numerical performance but no global convergence under traditional line searches such as Armijo line search, Wolfe line search, and Goldstein line search. In this paper we propose a new nonmonotone line search for Liu-Storey conjugate gradient method (LS in short). The new nonmonotone line search can guarantee the global convergence of LS method and has a good numerical performance. By estimating the Lipschitz constant of the derivative of objective functions in the new nonmonotone line search, we can find an adequate step size and substantially decrease the number of functional evaluations at each iteration. Numerical results show that the new approach is effective in practical computation.  相似文献   

6.
The search direction in unconstrained minimization algorithms for large‐scale problems is usually computed as an iterate of the preconditioned) conjugate gradient method applied to the minimization of a local quadratic model. In line‐search procedures this direction is required to satisfy an angle condition that says that the angle between the negative gradient at the current point and the direction is bounded away from π/2. In this paper, it is shown that the angle between conjugate gradient iterates and the negative gradient strictly increases as far as the conjugate gradient algorithm proceeds. Therefore, the interruption of the conjugate gradient sub‐algorithm when the angle condition does not hold is theoretically justified. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The split feasibility problem deals with finding a point in a closed convex subset of the domain space of a linear operator such that the image of the point under the linear operator is in a prescribed closed convex subset of the image space. The split feasibility problem and its variants and generalizations have been widely investigated as a means for resolving practical inverse problems in various disciplines. Many iterative algorithms have been proposed for solving the problem. This article discusses a split feasibility problem which does not have a solution, referred to as an inconsistent split feasibility problem. When the closed convex set of the domain space is the absolute set and the closed convex set of the image space is the subsidiary set, it would be reasonable to formulate a compromise solution of the inconsistent split feasibility problem by using a point in the absolute set such that its image of the linear operator is closest to the subsidiary set in terms of the norm. We show that the problem of finding the compromise solution can be expressed as a convex minimization problem over the fixed point set of a nonexpansive mapping and propose an iterative algorithm, with three-term conjugate gradient directions, for solving the minimization problem.  相似文献   

8.
The conjugate gradient method is a useful and powerful approach for solving large-scale minimization problems. Liu and Storey developed a conjugate gradient method, which has good numerical performance but no global convergence result under traditional line searches such as Armijo, Wolfe and Goldstein line searches. In this paper a convergent version of Liu–Storey conjugate gradient method (LS in short) is proposed for minimizing functions that have Lipschitz continuous partial derivatives. By estimating the Lipschitz constant of the derivative of objective functions, we can find an adequate step size at each iteration so as to guarantee the global convergence and improve the efficiency of LS method in practical computation.  相似文献   

9.
First- and second-order numerical methods for optimizing controlled dynamical systems with parameters are discussed. In unconstrained-parameter problems, the control parameters are optimized by applying the conjugate gradient method. A more accurate numerical solution in these problems is produced by Newton’s method based on a second-order functional increment formula. Next, a general optimal control problem with state constraints and parameters involved on the righthand sides of the controlled system and in the initial conditions is considered. This complicated problem is reduced to a mathematical programming one, followed by the search for optimal parameter values and control functions by applying a multimethod algorithm. The performance of the proposed technique is demonstrated by solving application problems.  相似文献   

10.
In this paper we solve large scale ill-posed problems, particularly the image restoration problem in atmospheric imaging sciences, by a trust region-CG algorithm. Image restoration involves the removal or minimization of degradation (blur, clutter, noise, etc.) in an image using a priori knowledge about the degradation phenomena. Our basic technique is the so-called trust region method, while the subproblem is solved by the truncated conjugate gradient method, which has been well developed for well-posed problems. The trust region method, due to its robustness in global convergence, seems to be a promising way to deal with ill-posed problems.  相似文献   

11.
借助谱梯度法和HS共轭梯度法的结构, 建立一种求解非线性单调方程组问题的谱HS投影算法. 该算法继承了谱梯度法和共轭梯度法储存量小和计算简单的特征, 且不需要任何导数信息, 因此它适应于求解大规模非光滑的非线性单调方程组问题. 在适当的条件下, 证明了该算法的收敛性, 并通过数值实验表明了该算法的有效性.  相似文献   

12.
Numerical methods are proposed for solving finite-dimensional convex problems with inequality constraints satisfying the Slater condition. A method based on solving the dual to the original regularized problem is proposed and justified for problems having a strictly uniformly convex sum of the objective function and the constraint functions. Conditions for the convergence of this method are derived, and convergence rate estimates are obtained for convergence with respect to the functional, convergence with respect to the argument to the set of optimizers, and convergence to the g-normal solution. For more general convex finite-dimensional minimization problems with inequality constraints, two methods with finite-step inner algorithms are proposed. The methods are based on the projected gradient and conditional gradient algorithms. The paper is focused on finite-dimensional problems obtained by approximating infinite-dimensional problems, in particular, optimal control problems for systems with lumped or distributed parameters.  相似文献   

13.
一族新的共轭梯度法的全局收敛性   总被引:1,自引:0,他引:1  
共轭梯度法是求解无约束优化问题的一种重要的方法,尤其适用于大规模优化问题的求解。本文提出一族新的共轭梯度法,证明了其在推广的Wolfe非精确线搜索条件下具有全局收敛性。最后对算法进行了数值试验,试验结果验证了该算法的有效性。  相似文献   

14.
In this paper, we consider an optimal control problem of switched systems with input and state constraints. Since the complexity of such constraint and switching laws, it is difficult to solve the problem using standard optimization techniques. In addition, although conjugate gradient algorithms are very useful for solving nonlinear optimization problem, in practical implementations, the existing Wolfe condition may never be satisfied due to the existence of numerical errors. And the mode insertion technique only leads to suboptimal solutions, due to only certain mode insertions being considered. Thus, based on an improved conjugate gradient algorithm and a discrete filled function method, an improved bi-level algorithm is proposed to solve this optimization problem. Convergence results indicate that the proposed algorithm is globally convergent. Three numerical examples are solved to illustrate the proposed algorithm converges faster and yields a better cost function value than existing bi-level algorithms.  相似文献   

15.
In our previous works a new method of conjugate directions for large-scale unconstrained minimization problems has been presented [1, 2]. In the paper this algorithm is extended to minimization problems with bound constraints. Because the linear minimization along the newly found conjugate vector is not needed for constructing the next conjugate vector and one arbitrarily step-size (not necessarily the optimal one) is calculated along this conjugate direction, we are able to incorporate naturally the bound constraints into the algorithm. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Numerical solutions of time dependent and or nonlinear partial differential equations often require several solutions of a sparse linear system. If this system is factorized it may not fit into the computer core; if it is solved by an iterative process like the conjugate gradient algorithm it takes too much computing time. We show that if the small elements of the factorized matrix are deleted then the resulting operator is an excellent preconditioning operator for the conjugate gradient algorithm. Tests on two problems show that 90% of the main storage space can be saved without increasing the computing time as compared with a direct factorization method.  相似文献   

17.
In this paper, a truncated conjugate gradient method with an inexact Gauss-Newton technique is proposed for solving nonlinear systems.?The iterative direction is obtained by the conjugate gradient method solving the inexact Gauss-Newton equation.?Global convergence and local superlinear convergence rate of the proposed algorithm are established under some reasonable conditions. Finally, some numerical results are presented to illustrate the effectiveness of the proposed algorithm.  相似文献   

18.
The development of the Lanczos algorithm for finding eigenvalues of large sparse symmetric matrices was followed by that of block forms of the algorithm. In this paper, similar extensions are carried out for a relative of the Lanczos method, the conjugate gradient algorithm. The resulting block algorithms are useful for simultaneously solving multiple linear systems or for solving a single linear system in which the matrix has several separated eigenvalues or is not easily accessed on a computer. We develop a block biconjugate gradient algorithm for general matrices, and develop block conjugate gradient, minimum residual, and minimum error algorithms for symmetric semidefinite matrices. Bounds on the rate of convergence of the block conjugate gradient algorithm are presented, and issues related to computational implementation are discussed. Variants of the block conjugate gradient algorithm applicable to symmetric indefinite matrices are also developed.  相似文献   

19.
共轭梯度法是求解无约束优化问题的一种重要的方法.本文提出一族新的共轭梯度法,证明了其在推广的Wolfe非精确线搜索条件下具有全局收敛性.最后对算法进行了数值实验,实验结果验证了该算法的有效性.  相似文献   

20.
The spectral gradient method is a nonmonotone gradient method for large-scale unconstrained minimization. We strengthen the algorithm by modifications which globalize the method and present strategies to apply preconditioning techniques. The modified algorithm replaces a condition of uniform positive definitness of the preconditioning matrices, with mild conditions on the search directions. The result is a robust algorithm which is effective on very large problems. Encouraging numerical experiments are presented for a variety of standard test problems, for solving nonlinear Poisson-type equations, an also for finding molecular conformations by distance geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号