首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matoso E  Kubota LT  Cadore S 《Talanta》2003,60(6):1105-1111
An analytical method using silica gel chemically modified with zirconium (IV) phosphate for preconcentration of lead and copper, in a column system, and their sequential determination by flame atomic absorption spectrometry (FAAS), was developed. Sample solutions are passed through a glass column packed with 100 mg of the sorbent material, at pH 4.5, and lead and copper are eluted with 1.0 mol l−1 HNO3 at a flow rate of 2.0 ml min−1. The extraction of copper is affected by Fe(II), Mn(II), Zn(II), Ni(II) and Co(II) while only Fe(II) interferes in the lead determination. These interferences may be overcome with an appropriate addition of a KI or NaF solution. An enrichment factor of 30 was obtained for both metals. While the limits of detection (3σ) were 6.1 and 1.1 μg l−1, for Pb and Cu, respectively, the limits of determination were 16.7 and 3.3 μg l−1. The precision expressed as relative standard deviation (R.S.D.) obtained for 3.3 μg l−1 of Cu and 16.7 μg l−1 of Pb were 4.3 and 4.7%, respectively, calculated from ten measurements. The proposed method was evaluated with reference material and was applied for the determination of lead and copper in industrial and river waters.  相似文献   

2.
A fully automated procedure for the determination of ng l−1 amounts of lead has been developed using flow injection (FI) online column preconcentration coupled with electrothermal atomic absorption spectrometry (ETAAS). The proposed FI manifold and its operation make possible the introduction of the total eluate volume into the graphite atomizer, avoiding the necessity for optimization of subsampling the eluate. The interference of other heavy metal ions due to competition for active sites of the sorbent is overcome using a highly selective macrocycle immobilized on silica gel (Pb-02). Lead is adsorbed on a microcolumn (50 μl) packed with Pb-02, and after washing the column with dilute nitric acid, air is introduced to remove all solution from the column and connecting tubing. The sorbed analyte is then eluted quantitatively into the graphite tube atomizer, preheated to 100°C, with 36 μl of ETDA solution (0.035 mol l−1, pH 10.5), propelled by air in order to minimize dispersion. The collection efficiency was 77% and with a sample loading flow rate of 3 ml min−1 and a 60 s preconcentration time, the enhancement factor was 77 and the throughput was 17 samples per hour. The relative standard deviation (n = 10) at the 300 ng l−1 level was 2.7%, and the detection limit (3σ) was 0.4 ng l−1. No interference from heavy metals was observed, but ions of Ba2+, Sr2+ and K+ were found to interfere when the concentration ratios of interferent to lead exceeded values of 2000, 20 000 and 200 000, respectively. Quantitative recovery of lead was achieved from sodium, magnesium, aluminum, lanthanum and heavy metal salt solutions. The high selectivity and sensitivity, combined with extremely low blank values, make the proposed technique particularly attractive for the analysis of high-purity reagents, semiconductors and other high-purity materials. Results are presented for the determination of lead in some high-purity reagents.  相似文献   

3.
A solvent impregnated hollow fibre (SIHF) module has been developed for the preconcentration of lead by using bis(2-ethylhexyl) phosphoric acid (DEHPA) dissolved in kerosene as extractant. The module has been designed for an on-line determination of trace amounts of lead(II) at mg l−1 (ppm) level by flame atomic absorption spectrometry (FAAS).

The SIHF system is based on the metal liquid–liquid distribution between aqueous solutions of different acidity and the mentioned organic solution. The highest enrichment factor of Pb(II) was determined at pH=4.0 using a formic acid/formiate buffer solution.

Preconcentration experiments were carried out at low lead(II) concentration (mg l−1 level) by using the SIHF module. This study includes the influence of hydrodynamic and chemical conditions on the loading and elution of Pb(II) on the SIHF, i.e., flow rate through the fibres, acidity of the eluent (as nitric acid concentration) and the chemical nature of the acid used in the elution. Breakthrough curves were determined for different sampling flow rates, 0.54 ml min−1 was selected to minimise the loading volume of Pb(II) sample. 0.1 M nitric acid was chosen as eluent solution, and perchloric acid also shows appropriate elution characteristics. The degree of concentration obtained for Pb(II) are of 10 fold the original concentration. The quantification limit for Pb(II) achieved with this preconcentration system is 0.17 mg l−1.

The results obtained indicate that the SIHF system can be applied for on-line determination of trace amounts of lead(II) by FAAS.  相似文献   


4.
A field oriented and economical method of coprecipitation of trace elements like Al, Au, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Pd, Ti, V, W, Zn and REE has been developed. A novel reductant D-glucose, reduces KMnO4 in solution to form a precipitate of MnO2. Two liters of clear natural water sample is adjusted to pH 3.5–4.0, and is treated with 10 ml of 1% KMnO4 and 20 ml of 0.1% D-glucose. The sample is heated at a temperature of 75–80 °C, MnO2 is formed which coprecipitates the above trace elements. The precipitate is separated by filtration, dissolved in 2 ml of 50% HCl and 2 ml of 30% H2O2 and diluted to 25 ml for analysis using AAS and ICP-AES. The recoveries were found to be 96–105%. The preconcentration factor is 80. Limits of determination by the proposed method in natural waters are 1 μg l−1 for Al, Cd, Mo, V, W, Ti and Zn, 5 μg l−1 for Au, Bi, Co, Cu, Fe, Ni, Pb and Pd and 8 μg l−1 for REE. The RSD of the present procedure (n=5) is 8% at 5 μg l−1 level. Twenty water samples can be analyzed by an analyst in an 8-h day.  相似文献   

5.
A potentiometric FIA system for penicillin determination, employing penicillinase [E.C. 3.5.2.6] immobilized on silica gel, packed into a reactor, was improved by the use of statistically designed experiments. A two-level and three-factor factorial was used to find the best working conditions evaluating the influence of some parameters on the signal response of the system and the number of determinations per hour. These parameters were analyzed individually obtaining two level of the variables to be used in the factorial design: length of the reactor (1.5 and 2.0 cm), carrier flow rate (1.6 and 2.2 ml min−1) and sample volume (100 and 150 μl). The pure error on the measurements was estimated by authentic repetitions. The ideal working conditions taking into account a compromise between the best response signal and the number of determinations per hour (with the same importance) being chosen the level of factors: length of reactor 1.5 cm, carrier flow rate 2.2 ml min−1 and sample volume of 150 μl. Under these conditions the system allowed to analyze was about 45 samples per hour, during 73 days, with a standard deviation of 2.4% at concentration range between 10−1 and 10−3 mol l−1.  相似文献   

6.
A flow injection system coupled to a tungsten coil electrothermal atomizer has been developed for on-line separation and preconcentration, using lead as a model element. The system utilizes three-way solenoid valves for sampling, buffering, washing and reconditioning solution management, and the resin column is inserted in the tip of the autosampler arm of a Varian GTA-96. The solenoid valves and tungsten coil power supply were controlled by a computer program written in Visual Basic, interfaced with the built-in Varian software. The system performance was tested by loading the resin column with the sample flowing at 3 ml min−1 for 60 s. Elution was performed automatically by sampling 20 μl of the eluent from a sample cup of the autosampler, and this aliquot was delivered into a 150 W tungsten coil. With Chelex-100 resin, the separation of concomitants was tested with lead in the presence of as much as 1000 mg l−1 of Ca, Mg, Na or K. The model system presented an enrichment factor of 64 at a sampling rate of 30 samples per hour.  相似文献   

7.
A continuous flow system for the determination of lead in home made spirituous beverages was developed. The determination was based on the formation of a neutral chelate of the element with ammonium pyrrolidine dithiocarbamate, its adsorption onto a minicolumn packed with sodium faujasite type Y synthetic zeolite, followed by elution with methyl isobutyl ketone and determination by flame atomic absorption spectrometry. Ethanol and copper interfere strongly in the determination and therefore, must be separated prior to the analysis. Copper is removed by precipitation with rubeanic acid, while ethanol is eliminated by rotaevaporation. Sample solutions containing Pb2+ in the concentration range from 5 to 120 μg l−1 at pH 2.5 could be analyzed, by using a preconcentration time of 3 min. Preconcentration factors from 80 to 140 were achieved for a sample volume of 6 ml and the detection limit varied from 1.4 to 3.5 μg l−1, depending on the matrix composition. The relative standard deviations for 60 μg l−1 Pb was 3.2% (n = 10) and the recovery of spikes (20, 40, 60 and 80 μg l−1) added to the samples was estimated within 92–105% range, suggesting that lead can be quantitatively determined in such samples. Determining lead in several samples by an alternative technique further checked the accuracy. Finally, the concentrations of Pb2+ determined in 28 samples of Venezuelan spirituous beverages were in 12.6–370.0 μg l−1 range, depending on the fermenting material based on different mixtures of agave, raw sugar cane and white sugar.  相似文献   

8.
Soylak M  Tuzen M  Mendil D  Turkekul I 《Talanta》2006,70(5):1129-1135
A solid phase extraction procedure based on biosorption of copper(II), lead(II), zinc(II), iron(III), nickel(II) and cobalt(II) ions on Aspergillus fumigatus immobilized Diaion HP-2MG has been investigated. The analytical conditions including amounts of A. fumigatus, eluent type, flow rates of sample and eluent solutions were examined. Good recoveries were obtained to the spiked natural waters. The influences of the concomitant ions on the retentions of the analytes were also examined. The detection limits (3sigma, N = 11) were 0.30 μg l−1 for copper, 0.32 μg l−1 for iron, 0.41 μg l−1 for zinc, 0.52 μg l−1 for lead, 0.59 μg l−1 for nickel and 0.72 μg l−1 for cobalt. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of three standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 1515 Apple leaves and GBW 07605 Tea). The procedure was successfully applied for the determination of analyte ions in natural waters microwave digested samples including street dust, tomato paste, black tea, etc.  相似文献   

9.
Nielsen SC  Stürup S  Spliid H  Hansen EH 《Talanta》1999,49(5):27-1044
A rapid, robust, sensitive and selective time-based flow injection (FI) on-line solvent extraction system interfaced with electrothermal atomic absorption spectrometry (ETAAS) is described for analyzing ultra-trace amounts of Cr(VI). The sample is initially mixed on-line with isobutyl methyl ketone (IBMK). The Cr(VI) is complexed by reaction with ammonium pyrrolidine dithiocarbamate (APDC), and the non-charged Cr(VI)–PDC chelate formed is extracted into IBMK in a knotted reactor made from PTFE tubing. The organic extractant is separated from the aqueous phase by a gravity phase separator with a small conical cavity and delivered into a collector tube, from which 55 μl organic concentrate is subsequently introduced via an air flow into the graphite tube of the ETAAS instrument. The operations of the FI-system and the ETAAS detector are synchronously coupled. A significant advantage of the approach is that matrix constituents, such as high salt contents, effectively are eliminated. The extraction procedure was optimized by a simplex approach. A central composite design was subsequently employed to verify the estimated operational optimum. An 18-fold enhancement in sensitivity of Cr(VI) was achieved after preconcentration for 99 s at a sample flow rate of 5.5 ml min−1, as compared to direct introduction of 55 μl of sample, yielding a detection limit (3σ) of 3.3 ng l−1. The sampling frequency was 24.2 samples h−1. The proposed method was successfully evaluated by analyzing a NIST Cr(VI)-reference material, synthetic seawater and waste waters, and waste water samples from an incineration plant and a desulphurization plant, respectively.  相似文献   

10.
Burguera JL  Burguera M  Rondón C 《Talanta》2002,58(6):1167-1175
An on-line flow injection (FI) precipitation–dissolution system with microwave-assisted sample digestion has been developed for the electrothermal atomic absorption spectrometry (ETAAS) determination of trace or ultratrace amounts of molybdenum in human blood serum and whole blood samples. After the exposure of the sample to microwave radiation, the on-line precipitation of molybdenum was achieved by the merging-zone of a 0.5-ml plug of sample with a plug of potassium ferrocyanide, which were carried downstream with a solution of 0.5 mol l−1 of HNO3. The interfering effects of iron and copper were minimized by the introduction of a flow of a 5% (w/v) sodium potassium tartrate (for iron) and 2% (w/v) of thiourea (for copper and zinc) in a 5% (v/v) ammonia and 2% (v/v) ammonium chloride solution previous to the precipitation reaction. The reddish-brown precipitate of molybdenyl ferrocyanide was collected on the walls of a knotted reactor. The precipitate was dissolved with the introduction of 1 ml of a 3.0 mol l−1 NaOH solution and the best performance in terms of detection limit and precision was achieved when a sub-sample of 140 μl was collected in a capillary of a sampling arm assembly, to introduce 20 μl volumes into the atomizer by means of positive displacement with air through a time-based injector. A detection limit (3σ) of 0.1 μg Mo l−1 using an aqueous standard solution was obtained. The method is quantitative and is applied over the range 0.2–20.0 μg Mo l−1. The precision of the method evaluated by ten replicate analyses of aqueous standard solutions containing 0.5 and 1.0 μg Mo l−1 was 2.8 and 3.1% (relative standard deviation, RSD) (for n=5), respectively. Whereas, the precision evaluated by five replicate analysis of a serum and a whole blood sample were 3.3 and 3.8% RSD. An enrichment factor of ca. 3.5 was achieved with the introduction of 0.5 ml aqueous standard solutions at a sample flow rate of 1.0 ml min−1. Recoveries of spiked molybdenum in blood serum and whole blood were in the ranges 96–102 and 94–98%, respectively. The results obtained for two human whole blood certified reference materials were in good agreement with the indicative values.  相似文献   

11.
The preconcentration efficiency expressed as an enrichment factor (EF) in knotted and serpentine reactors (SR) for FI sorption and preconcentration for the off-line determination of Cd(II), Ni(II), Co(II),Cu(II), Pb(II), Zn(II), Mo(VI), Cr(VI) and W(VI) with ICP-MS was investigated. The preconcentration was carried out by the formation of metal–pyrrolidine dithiocarbamate complex in an acidic solution and sorbed onto the inner wall of the PTFE reactors. The EFs were determined as the ratio between the analyte intensities after preconcentration using the reactors and that obtained without using the reactors. Comparing the two procedures for the equal reactor length (150 cm), the higher EFs obtained by using knotted reactor (KR) were observed for all elements. With the preconcentration time of 120 s and a sample flow rate of 1.2 ml min−1, the EFs of 4–36 and 3–12 were gained using knotted and SRs, respectively. The results obtained indicate that the KR is preferable to use for flow injection sorption preconcentration system over the SR.  相似文献   

12.
A sample solution was passed at 20 ml min−1 through a column (150×4 mm2) of Amberlite IRA-410Stron anion-exchange resin for 60 s. After washing, a solution of 0.1% sodium borohydride was passed through the column for 60 s at 5.1 ml min−1. Following a second wash, a solution of 8 mol l−1 hydrochloric acid was passed at 5.1 ml min−1 for 45 s. The hydrogen selenide was stripped from the eluent solution by the addition of an argon flow at 150 ml min−1 and the bulk phases were separated by a glass gas–liquid separator containing glass beads. The gas stream was dried by passing through a Nafion® dryer and fed, via a quartz capillary tube, into the dosing hole of a transversely heated graphite cuvette containing an integrated L’vov platform which had been pretreated with 120 μg of iridium as trapping agent. The furnace was held at a temperature of 250°C during this trapping stage and then stepped to 2000°C for atomization. The calibration was performed with aqueous standards solution of selenium (selenite, SeO32−) with quantification by peak area. A number of experimental parameters, including reagent flow rates and composition., nature of the gas–liquid separator, nature of the anion-exchange resin, column dimensions, argon flow rate and sample pH, were optimized. The effects of a number of possible interferents, both anionic and cationic were studies for a solution of 500 ng 1−1 of selenium. The most severe depressions were caused by iron (III) and mercury (II) for which concentrations of 20 and 10 mg  1−1 caused a 5% depression on the selenium signal. For the other cations (cadmium, cobalt, copper, lead,. magnesium, and nickel) concentrations of 50–70 mg 1−1 could be tolerated. Arsenate interfered at a concentration of 3 mg−1, whereas concentrations of chloride, bromide, iodide, perchlorate, and sulfate of 500–900 mg l−1 could be tolerated. A linear response was obtained between the detection limit of 4 ng 1−1, with a characteristic mass of 130 pg. The RSDs for solutions containing 100 and 200 ng 1−1 selenium were 2.3% and 1.5%, respectively.  相似文献   

13.
Cloud point methodology has been successfully used for the preconcentration of trace amounts of Cd and Pb as a prior step to their determination by flame atomic absorption spectrometry. O,O-Diethyldithiophosphate and Triton X-114 are used as hydrophobic ligand and non-ionic surfactant, respectively. After phase separation at 40 °C based on cloud point of the mixture, the surfactant-rich phase is diluted with methanol. The enriched analyte in the final solution is determined by flame atomic absorption spectrometry using conventional nebulization. After optimization of the complexation and extraction conditions, enhancement factors of 22 and 43 were obtained for Cd and Pb, respectively. Under the experimental conditions used, preconcentration of only 10 ml of sample in the presence of 0.05% (v/v) Triton X-114 permitted the detection of 0.62 μg l−1 of Cd and 2.86 μg l−1of Pb. The proposed method was applied to the determination of Cd and Pb in human hair samples.  相似文献   

14.
A procedure for separation and preconcentration of trace amounts of copper in natural water samples, has been proposed. It is based on the adsorption of copper(II) ions onto a column of Amberlite XAD-2 resin loaded with calmagite reagent. This way amounts of copper within the range from 0.0125 to 25.0 μg, in a sample volume of 25 to 250 ml, and pH from 3.7 to 10.0 was concentrated as calmagite complex in a column of 0.50 g of Amberlite XAD-2 resin. Copper (II) ion was desorpted by using 5.0 ml of 2 mol l−1 hydrochloric acid. Detection and determination limits of the proposed procedure for 250 ml sample volume were 0.15 and 0.50 μg l−1, respectively. Selectivity test showed that (in the indicated concentration), calcium(II) (500 mg l−1), magnesium(II) (500 mg l−1), strontium(II) (50 mg l−1), iron(III) (10 mg l−1), nickel(II) (10 mg l−1), cobalt(II) (10 mg l−1), cadmium(II) (10 mg l−1) and lead(II) (10 mg l−1) did not interfere in copper determination by this procedure. Precision of the method, evaluated as the relative standard deviation by analyzing a series of seven replicates, was 2.42% for a copper mass of 1.0 μg in a sample volume of 100 ml. The accuracy of the proposed procedure was evaluated by means of copper determination in reference biological samples. The achieved results were in good agreement with certified values. The extractor system had a sorption capacity of 1.59 μmol of copper per gram of resin loaded with calmagite. The proposed procedure was applied for copper determination by FAAS in natural water samples. Samples were collected from different places of Salvador city, Bahia, Brazil. The achieved recovery, measured by the standard addition technique, showed that the proposed procedure had good accuracy. A good enrichment factor (50×) and simplicity are the main advantages in this analytical procedure.  相似文献   

15.
Tunçeli A  Türker AR 《Talanta》2002,57(6):1199-1204
A simple and sensitive method for the speciation, separation and preconcentration of Cr(VI) and Cr(III) in tap water was developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its 1,5-diphenylcarbazone complex by using a column containing Amberlite XAD-16 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Then, Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of acidity, amount of adsorbent, eluent type and flow rate of the sample solution on to the preconcentration procedure has been investigated. The retained Cr(VI) complex was eluated with 10 ml of 0.05 mol l−1 H2SO4 solution in methanol. The recovery of Cr(VI) was 99.7±0.7 at 95% confidence level. The highest preconcentration factor was 25 for a 250 ml sample volume. The detection limit of Cr(VI) was found as 45 μg l−1. The adsorption capacity of the resin was found as 0.4 mg g−1 for Cr (VI). The effect of interfering ions has also been studied. The proposed method was applied to tap water samples and chromium species have been determined with the relative error <3%.  相似文献   

16.
A flow injection (FI) on-line preconcentration procedure for ultra-trace inorganic selenium was developed with detection by atomic fluorescence spectrometry. Selenium (IV) is co-precipitated with lanthanum hydroxide and collected on a PTFE beads packed column, the precipitate is afterwards dissolved with hydrochloric acid followed by hydride generation with reduction by tetrahydroborate. A thorough scrutiny was made for chemical variables and FI parameters. With a sampling volume of 3.4 ml, quantitative retention of selenium (IV) was obtained, along with an enrichment factor of 11 and a sampling frequency of 38 h− 1. The detection limit, defined as 3 times the blank standard deviation (3σ), was 5 ng l− 1. The precision was characterized by a RSD value of 1.2% (at the 0.5 μg l− 1 level, n = 11). The enrichment factor was further enhanced to 20 along with a detection limit of 3 ng l− 1, with a sample loading volume of 6.8 ml. The procedure was validated with certified reference materials and biological samples. It was also applied to the speciation of inorganic selenium in surface waters.  相似文献   

17.
Determination of glyphosate by ion chromatography   总被引:4,自引:0,他引:4  
An ion chromatography system for the determination of glyphosate was described. Ion chromatograph was carried out by suppressed conductivity detection (DX-100). The eluent contained 9 mmol l−1 Na2CO3 and 4 mmol l−1 NaOH. The detection limit was 0.042 μg ml−1 (S/N=3). The relative standard deviation was 1.99% and the correlation coefficient of the calibration curve for area was 0.9995. The linear range was 0.042100 μg ml−1. Common inorganic ion and organic acids did not interfere. The recovery was 96.4103.2%. The method was simple, rapid, reliable and inexpensive.  相似文献   

18.
Bismuth as BiCl4 and BH4 ware successively retained in a column (150 mm × 4 mm, length × i.d.) packed with Amberlite IRA-410 (strong anion-exchange resin). This was followed by passage of an injected slug of hydrochloric acid resulting in bismuthine generation (BiH3). BiH3 was stripped from the eluent solution by the addition of a nitrogen flow and the bulk phases were separated in a gas–liquid separator. Finally, bismutine was atomized in a quartz tube for the subsequent detection of bismuth by atomic absorption spectrometry. Different halide complexes of bismuth (namely, BiBr4, BiI4 and BiCl4) were tested for its pre-concentration, being the chloride complexes which produced the best results. Therefore, a concentration of 0.3 mol l−1 of HCl was added to the samples and calibration solutions. A linear response was obtained between the detection limit (3σ) of 0.225 and 80 μg l−1. The R.S.D.% (n = 10) for a solution containing 50 μg l−1 of Bi was 0.85%. The tolerance of the system to interferences was evaluated by investigating the effect of the following ions: Cu2+, Co2+, Ni2+, Fe3+, Cd2+, Pb2+, Hg2+, Zn2+, and Mg2+. The most severe depression was caused by Hg2+, which at 60 mg l−1 caused a 5% depression on the signal. For the other cations, concentrations between 1000 and 10,000 mg l−1 could be tolerated. The system was applied to the determination of Bi in urine of patients under therapy with bismuth subcitrate. The recovery of spikes of 5 and 50 μg l−1 of Bi added to the samples prior to digestion with HNO3 and H2O2 was in satisfactory ranges from 95.0 to 101.0%. The concentrations of bismuth found in six selected samples using this procedure were in good agreement with those obtained by an alternative technique (ETAAS). Finally, the concentration of Bi determined in urine before and after 3 days of treatment were 1.94 ± 1.26 and 9.02 ± 5.82 μg l−1, respectively.  相似文献   

19.
Tuning the parameters for fast respirometry   总被引:1,自引:0,他引:1  
The aerobic bacterial respiration rate is an indicator of microbial growth and metabolism, essential for monitoring the oxidation process and organic load content of samples in a diverse field of application from influent streams in wastewater treatment facilities to industrial fermentations. This paper looks at the influence of parameters, such as culture concentration and volume, sample surface area/volume ratio and headspace volume to achieve optimisation of respirometry measurement and thus design a bench-top respirometric device, based on the monitoring of the pressure changes in a closed chamber where a bacterial culture is allowed to respire in contact with a sample. Contrary to traditional respirometry, the goal is detection of bacterial respiration within 5 min in a minimal sample volume. Both qualitative and quantitative data could be derived using a simple equation and fine-tuning of the micro-manometric parameters of the device, with a most important finding being that minimal headspace volume in combination with elevated bacterial populations maximised absolute pressure change response and favoured high sensitivity at short response time, even though the conditions indicated oxygen-limitation. Furthermore, in comparison with a commercially available respirometer the typical respiration rate of stationary phase P. putida M10 gave oxygen uptake rate (OUR) and specific oxygen uptake rate (SOUR) of 38 μmol l−1 min−1 and 5 μmol g−1 min−1, respectively with the ‘classical’ system, while the μ-Warburg device designed here showed a typical response, for the culture with the same dry cell concentration, of 66 μmol l−1 min−1 for the OUR and 9 μmol g−1 min−1 for the SOUR. The remarkable outcome from this data, therefore, is that it appears that the high surface area/volume geometry of the μ-Warburg device design has achieved less respiration limitation, even though the sample is unstirred. This presents important insight regarding future respirometer design.  相似文献   

20.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号