首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The region of instability of the Hill-Shafranov viscous MHD vortex with respect to azimuthal axisymmetric perturbations of the velocity field is determined numerically as a function of the Reynolds number and magnetization in a linear formulation. An approximate formulation of the linear stability problem for MHD flows with circular streamlines is considered. The further evolution of the perturbations in the supercritical region is studied using a nonlinear analog model (a simplified initial system of equations that takes into account some important properties of the basic equations). For this model, the secondary flows resulting from the instability are determined. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 40–50, May–June, 2007.  相似文献   

2.
The generalized kinematic equation for film thickness, taking into account the effect of phase change at the interface, is used to investigate the nonlinear stability of film flow down a vertical wall. The analysis shows that supercritical stability and subcritical instability are both possible for the film flow system. Applications of the result to isothermal, condensate and evaporate film flow show that mass transfer into (away from) the liquid phase will stabilize (destabilize) the film flow. Finally, we find that supercritical filtered waves are always linearly stable with regard to side-band disturbance.  相似文献   

3.
This paper investigates the stability of thin viscoelastic liquid film flowing down on the inner surface of a rotating vertical cylinder by means of the long wave perturbation. After proving the insufficiency of the linear model in characterization of certain flow behaviors, a generalized nonlinear kinematic model is then derived to represent the physical system. This model is solved through the following procedure. In the first step, the normal mode method is used to characterize the linear behaviors. The amplitude growth rates and the threshold conditions are characterized subsequently and summarized as the by-products of the linear solutions. In the second step, a nonlinear film flow model is solved by using the method of multiple scales to characterize flow behaviors at various states of sub-critical stability, sub-critical instability, supercritical stability, and supercritical explosion. The modeling results indicate that with the increase in the rotation speed Ω and the radius of cylinder R, the film flow system will be more stable.  相似文献   

4.
B. Uma  R. Usha 《Nonlinear dynamics》2008,52(1-2):115-128
Weakly nonlinear stability analysis of a falling film with countercurrent gas–liquid flow has been investigated. A normal mode approach and the method of multiple scales are employed to carry out the linear and nonlinear stability solutions for the film flow system. The results show that both supercritical stability and subcritical instability are possible for a film flow system when the gas flows in the countercurrent direction. The stability characteristics of the film flow system are strongly influenced by the effects of interfacial shear stress when the gas flows in the countercurrent direction. The effect of countercurrent gas flow in a falling film is to stabilize the film flow system.  相似文献   

5.
Development of thin two-layer film over a uniformly rotating disk is studied numerically under the assumption of planar interface and free surface. Similarity transformation is applied to transform the Navier-Stokes equations into a set of coupled non-linear, unsteady partial differential equations. This set of equations are solved numerically by using the finite-difference technique. It is observed that the rate of film thickness varies at different time zone depending on the rate of rotational speed of the disk. A physical explanation is provided to justify this anomalous behaviour. It is observed that, smaller thickness on the top layer enhance the initial rate of film thinning. But the overall effect of density, viscosity and the initial film thickness ratio are found to be insensitive to the final film thickness at large time.  相似文献   

6.
The film dynamic of a thin liquid along an inclined and wavy wall was numerically depicted in a weighted-residual integral boundary layer equation. A qualitative and quantitative analysis was initially carried out and accurate comparisons were obtained from experimental data on film instability along a flat and inclined as well as a wavy wall. To pinpoint the effect of waviness on film instability, 20 wavy wall periods in the computational CFD domain were considered. Several waviness parameters were studied and shown to have taken on a major role in the film instability process. Finally, a wide range of main wall inclination angles was taken into account, and consequent numerical data permitted identification of a threshold angle value. For wall angles higher than the threshold angle, the film behaved as though no corrugations were present. For lower angles, the film was repeatedly altered during the acceleration and deceleration phases.  相似文献   

7.
针对波状基底上含不溶性活性剂液滴的铺展过程,引入受活性剂浓度影响的分离压模型,应用润滑理论建立了液滴高度和活性剂浓度演化方程组,通过数值计算方法得到了分离压作用下含活性剂液滴过程的演化特征. 研究表明:分离压作用下的液滴演化时间显著缩短,铺展速率加快,铺展前沿处衍生出的子波结构明显减少,铺展更加稳定;分离压对液滴铺展稳定性的影响与活性剂关联强度密切相关,减小引力强度系数α1有利于促进液滴的铺展,而减小斥力强度系数α2则起抑制作用,且放大了液滴的演化扰动能量,致使液滴铺展呈现不稳定特征;增加基底高度D或波数k均使液滴铺展速率减慢.   相似文献   

8.
This paper investigates the propagation of torsional wave in an initially stressed poroelastic layer with corrugated as well as loosely bonded boundary surfaces, sandwiched between a corrugated fiber-reinforced layer and a viscoelastic half-space under initial stress. The velocity equation has been obtained in closed form analytically and the substantial effect of affecting parameters on the phase velocity of torsional surface wave has been demonstrated numerically and graphically. Comparative study has been made to observe the effect of flatness parameter, reinforcement, viscoelasticity and porosity on the phase velocity, meticulously. Some particular cases have also been discussed and it is found that velocity equation is in well-agreement to the classical Love wave equation. Moreover, some remarkable observation has been made through numerical computation and graphical demonstration for fiber-reinforced layer of carbon fiber-epoxy resin, poroelastic layer of sandstone and a viscoelastic half-space.  相似文献   

9.
Cheng  Po-Jen  Chen  Cha'o-Kuang  Lai  Hsin-Yi 《Nonlinear dynamics》2001,24(3):305-332
This paper investigates the weakly nonlinear stability theoryof a thin viscoelastic liquid film flowing down along the outsidesurface of a vertical cylinder. The long-wave perturbation method isemployed to solve for generalized nonlinear kinematic equations withfree film interface. The normal mode approach is first used to computethe linear stability solution for the film flow. The method of multiplescales is then used to obtain the weak nonlinear dynamics of the filmflow for stability analysis. The modeling results indicate that both thesubcritical instability and supercritical stability conditions arepossible to occur in a viscoelastic film flow system. The degree ofinstability in the film flow is further intensified by the lateralcurvature of cylinder. This is somewhat different from that of theplanar flow. The modeling results also indicate that by increasing theviscoelastic effect and decreasing the radius of the cylinder the filmflow can become less stable as traveling down along the verticalcylinder.  相似文献   

10.
The dynamics and stability of fluid-conveying corrugated pipes are investigated. The flow velocity is assumed to harmonically vary along the pipe rather than with time. The dimensionless equation is discretized with the differential quadrature method(DQM). Subsequently, the effects of the mean flow velocity and two key parameters of the corrugated pipe, i.e., the amplitude of the corrugations and the total number of the corrugations, are studied. The results show that the corrugated pipe will lose stability by flutter even if it has been supported at both ends. When the total number of the corrugations is sufficient, this flutter instability occurs at a micro flow velocity. These phenomena are verified via the Runge-Kutta method. The critical flow velocity of divergence is analyzed in detail. Compared with uniform pipes, the critical velocity will be reduced due to the corrugations, thus accelerating the divergence instability. Specifically,the critical flow velocity decreases if the amplitude of the corrugations increases. However, the critical flow velocity cannot be monotonously reduced with the increase in the total number of the corrugations. An extreme point appears, which can be used to realize the parameter optimization of corrugated pipes in practical applications.  相似文献   

11.
The stability of a conducting viscous film flowing down an inclined plane at moderate Reynolds number in the presence of electromagnetic field is investigated under induction-free approximation. Using momentum integral method a non-linear evolution equation for the development of the free surface is derived. The linear stability analysis of the evolution equation shows that the magnetic field stabilizes the flow whereas the electric field stabilizes or destabilizes the flow depending on its orientation with the flow. The weakly non-linear study reveals that both the supercritical stability and subcritical instability are possible for this type of thin film flow. The influence of magnetic field on the different zones is very significant, while the impact of electric field is very feeble in comparison.  相似文献   

12.
In this paper, compressible flow of aviation kerosene at supercritical conditions has been studied both numerically and experimentally. The thermophysical properties of supercritical kerosene are calculated using a 10 species surrogate based on the principle of extended corresponding states (ECS). Isentropic acceleration of supercritical kerosene to subsonic and supersonic speeds has been analyzed numerically. It has been found that the isentropic relationships of supercritical kerosene are significantly different from those of ideal gases. A two-stage fuel heating and delivery system is used to heat the kerosene up to a temperature of 820 K and pressure of 5.5 MPa with a maximum mass flow rate of 100 g/s. The characteristics of supercritical kerosene flows in a converging-diverging nozzle (Laval nozzle) have been studied experimentally. The results show that stable supersonic flows of kerosene could be established in the temperature range of 730 K-820 K and the measurements in the wall pressure agree with the numerical calculation.  相似文献   

13.
采用自研的高保真度爆轰与冲击动力学程序,对柱形汇聚几何中内爆驱动金属材料界面不稳定性的动力学行为,进行了数值模拟研究。结果表明,首次冲击后至约12 μs,界面发展以RM(Richtmyer-Meshkov)不稳定性为主;12 μs后至冲击波聚心反弹加载前,界面聚心运动处于加速减速状态,界面发展由RT (Rayleigh-Taylor)不稳定性主导;冲击波聚心反弹加载后,界面发展又由RM不稳定性主导。另外,还研究了初始条件(初始振幅、初始波长、钢壳初始厚度和几何构型)对柱形内爆驱动金属材料界面不稳定性的影响。结果显示:初始振幅较大时振幅增长也较大;初始波长较小(模数较大)时振幅增长较小,而且存在一个截止波长;钢壳厚度会抑制扰动增长,也存在一个截止厚度;几何汇聚效应会使扰动增长速度更快。  相似文献   

14.
The hydrodynamic instability of a falling film of a dilute solution of a volatile surfactant is studied.The flow of the liquid-gas (vapor) two-phase three-component system is accompanied by surfactant mass transfer across the free surface and is described by a system of five evolutionary equations for five functions depending on time and a spatial coordinate. These functions are the thicknesses of the film and the diffusion boundary layer, the concentrations of the free surfactant and the bound surfactant in the adsorbed sublayer, and the fluid velocity on the film surface. The dispersion equation determining the eigenvalues and the corresponding instability modes is solved numerically in the space of ten free nondimensional governing parameters. Main attention is focused on examining the role of the parameters controlling the influence of the surfactant on the Marangoni effect and the film instability at finite adsorption-desorption rates.  相似文献   

15.
The finite element method is used to numerically simulate localized necking in aluminum alloy tube under internal pressure. The measured electron backscatter diffraction (EBSD) data are directly incorporated into the finite element model and the constitutive response at an integration point is described by the single crystal plasticity theory. The tube is assumed sufficiently long, so that length changes as well as the end effects can be ignored and a plane strain analysis can be performed. Localized necking is assumed to be associated with surface instability, the onset of unstable thinning. It is demonstrated that such a surface instability/necking is the natural outcome of the present approach, and an artificial initial imperfection required by other approaches is not necessary in the present analysis. The effects of spatial grain orientation distribution, material strain rate sensitivity, work hardening, and initial surface topography on necking are discussed. It is found that localized necking depends strongly on both the initial texture and its spatial orientation distribution, while the initial surface topography has a negligible effect on necking.  相似文献   

16.
The instability and regular nonlinear waves in the film of a heavy viscous liquid flowing along the wall of a round tube and interacting with a gas flow are investigated. The solutions for the wave film flows are numerically obtained in the regimes from free flow-down in a counter-current gas stream to cocurrent upward flow of the film and the gas at fairly large gas velocities. Continuous transition from the counter-current to the cocurrent flow via the state with a maximum amplitude of nonlinear waves and zero values of the liquid flow rate and the phase velocity is investigated. The Kapitsa-Shkadov method is used to reduce a boundary value problem to a system of evolutionary equations for the local values of the layer thickness and the liquid flow rate.  相似文献   

17.
形状记忆合金SMA主动驱动波纹板效率高,且性能稳定,在设计自适应智能结构上具有可观的前景。为有效利用有限元法对SMA波纹板结构进行计算分析,基于已有SMA本构模型推导了增量型SMA本构模型,据此编写了可由ABAQUS调用的用户材料(UMAT)子程序;利用该UMAT子程序对SMA主动驱动波纹板结构进行了数值模拟计算,与实验结果的对比验证了计算结果的有效性;在SMA波纹板原始结构基础上,提出了SMA短带错落布置型新结构,并进行了数值模拟分析与验证;提出了新结构的温度控制方案和提高驱动效果的措施,可为SMA驱动波纹板驱动器的设计与应用提供参考与借鉴。  相似文献   

18.
Recent applications in flexible electronics require that thin metal films grown on elastomer substrates be deformable. However, how such laminates deform is poorly understood. While a freestanding metal film subject to tension will rupture at a small strain by undergoing a necking instability, we anticipate that a substrate will retard this instability to an extent that depends on the relative stiffness and thickness of the film and the substrate. Using a combination of a bifurcation analysis and finite element simulations, we identify three modes of tensile deformation. On a compliant elastomer, a metal film forms a neck and ruptures at a small strain close to that of a freestanding film. On a stiff elastomer, the metal film deforms uniformly to large strains. On an elastomer of intermediate compliance, the metal film forms multiple necks, deforms much beyond the initial bifurcation, and ruptures at a large strain. Our theoretical predictions call for new experiments.  相似文献   

19.
在方管的基础上引入折纹结构, 利用几何关系建立折纹管的折角公式。采用LS-DYNA软件研究了6种折纹管在轴向冲击下的屈曲模态与能量吸收性能, 并与方管进行对比分析。结果表明, 折纹管在冲击载荷作用下屈曲变形过程可分为3个阶段, 初始峰值阶段、稳定渐进屈曲阶段和密实化阶段。折角是影响初始峰值载荷和平均载荷的重要因素之一, 折纹结构的引入有效的降低了初始峰值载荷, 减小了冲击力的波动幅度; 折纹管的比吸能低于方管, 但是在特定折角下, 折纹管的压缩力效率和比总体效率高于方管。  相似文献   

20.
It is shown that the critical Rayleigh number which characterizes the stability of a thin charged viscous fluid film on the surface of a rigid spherical core develops rapidly with decrease in the film thickness to 100 nm when the effect of the disjoining pressure becomes significant. The dependence of the instability growth rate on the thickness of the fluid layer is obtained by analyzing the dispersion relation numerically. Yaroslavl’. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 102–106, January–February, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号