首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under pitch excitation,the sloshing of liquid in circular cylindrical tank includes planar motion,rotary motion and rotary motion inside planar motion.The boundaries between stable motion and unstable motion depend on the radius of the tank,the liquid height,the gravitational intension,the surface tensor and the sloshing damping.In this article,the differential equations of nonlinear sloshing are built first. And by variational principle,the Lagrange function of liquid pressure is constructed in volume intergration form.Then the velocity potential function is expanded in series by wave height function at the free surface.The nonlinear equations with kinematics and dynamics free surface boundary conditions through variation are derived.At last,these equations are solved by multiple-scales method.The influence of Bond number on the global stable response of nonlinear liquid sloshing in circular cylinder tank is analyzed in detail.The result indicates that variation of amplitude frequency response characteristics of the system with Bond,jump,lag and other nonlinear phenomena of liquid sloshing are investigated.  相似文献   

2.
A numerical study of a non-Darcy mixed convective heat and mass transfer flow over a vertical surface embedded in a dispersion, melting, and thermal radiation is porous medium under the effects of double investigated. The set of governing boundary layer equations and the boundary conditions is transformed into a set of coupled nonlinear ordinary differential equations with the relevant boundary conditions. The transformed equations are solved numerically by using the Chebyshev pseudospectral method. Comparisons of the present results with the existing results in the literature are made, and good agreement is found. Numerical results for the velocity, temperature, concentration profiles, and local Nusselt and Sherwood numbers are discussed for various values of physical parameters.  相似文献   

3.
在低重力环境下,用变分原理建立了液体晃动的压力体积分形式的Lagrange函数,并将速度势函数在自由液面处作波高函数的级数展开,从而导出自由液面运动学和动力学边界条件非线性方程组;最后用四阶Runge-Kutta法求解非线性方程组。计算结果表明,随俯仰激励频率的逐渐变化,由于面外主模态和次生模态同时失稳,致使整个系统各阶模态和波高函数由稳态运动过渡为不稳定运动。  相似文献   

4.
In a plane horizontal fluid layer bounded by permeable plane surfaces which are heated to different temperatures and between which transverse flow takes place with uniform velocity, convection occurs at a definite critical Rayieigh number. The study of the disturbance spectrum and the convective stability, made within the framework of linear theory in [1], showed that convective instability in the layer with permeable boundaries, just as in the case of the Rayieigh problem, is associated with the development of monotonie disturbances. It turns out that the transverse motion in the layer leads to a considerable increase of the Rayieigh number. Linear theory does not permit analysis of the development of the disturbances in the supercritical region. Analysis of the developed nonlinear motion can be made only on the basis of the complete nonlinear convection equations.In this investigation we made a numerical study of nonlinear motions in the supercritical region. Calculations were made on a computer via the grid method. Solutions are obtained for the nonlinear equations of motion over a wide range of Rayieigh numbers for different values of the Peclet number, whichdefines the intensity of the transverse motion in the layer.The author wishes to thank E. M. Zhukovitskii for his guidance, and G. Z. Gershuni and E. L. Tarunin for their interest and assistance in the study.  相似文献   

5.
Heat transfer analysis has been presented for the boundary layer forced convective flow of an incompressible fluid past a plate embedded in a porous medium. The similarity solutions for the problem are obtained and the reduced nonlinear ordinary differential equations are solved numerically. In case of porous plate, fluid velocity increases for increasing values of suction parameter whereas due to injection, fluid velocity is noticed to decrease. The non-dimensional temperature increases with the increasing values of injection parameter. A novel result of this investigation is that the flow separation occurred due to suction/injection may be controlled by increasing the permeability parameter of the medium. The effect of thermal radiation on temperature field is also analyzed.  相似文献   

6.
Transient natural convection boundary layer flow of an incompressible viscous fluid past an impulsively moving semi- infinite vertical cylinder is considered. The temperature and concentration of the cylinder surface are taken to be uniform. The unsteady, nonlinear and coupled governing equations of the flow are solved using an implicit finite difference scheme. The finite difference scheme is unconditionally stable and accurate. Numerical results are presented with various sets of parameters for both air and water. Transient effects of velocity, temperature and concentration profiles are analyzed. Local and average skin friction, rates of heat and mass transfer are shown graphically. Received on 1 November 1999  相似文献   

7.
Mixed convection heat transfer about a semi-infinite inclined plate in the presence of magneto and thermal radiation effects is studied. The fluid is assumed to be incompressible and dense. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the Keller box method. The effects of the mixed convection parameter R i, the angle of inclination α, the magnetic parameter M and the radiation–conduction parameter R d on the velocity and temperature profiles as well as on the local skin friction and local heat transfer parameters. For some specific values of the governing parameters, the results are compared with those available in the literature and a fairly good agreement is obtained.  相似文献   

8.
Within the class of exact solutions of the thermal-convection equations in the Oberbeck-Boussinesq approximation, which assumes a linear dependence of the temperature and the vertical velocity component on the height, a non-self-similar behavior of localized disturbances of a special type in a nonuniformly heated liquid layer is studied. It is shown that in an unstably stratified medium these disturbances can evolve to isothermal vortex structures of Burgers type. In the conditions of stable stratification or uniform heating of the layer, the disturbances considered tend to the state of rest in an oscillating or monotonic manner. New solutions describing self-similar convective vortices are found.  相似文献   

9.
In this paper,the basic equations governing the flow and heat transfer of an incompressible viscous and electrically conducting fluid past a semi-infinite vertical permeable plate in the form of partial differential equations are reduced to a set of non-linear ordinary differential equations by applying a suitable similarity transformation.Approximate solutions of the transformed equations are obtained by employing the perturbation method for two cases,i.e.,small and large values of the suction parameter.From the numerical evaluations of the solution,it can be seen that the velocity field at any point decreases as the values of the magnetic and suction parameters increase.The effect of the magnetic parameter is to increase the thermal boundary layer.It is also found that the velocity and temperature fields decrease with the increase in the sink parameter.  相似文献   

10.
The system of approximate nonlinear equations describing liquid oscillations in axisymmetric vessels is constructed. The equations are obtained for the case in which two coordinates belonging to the family of generalized coordinates characterizing the liquid motion are not small. This family is selected so that from the resulting nonlinear equations we can obtain as a particular case the nonlinear equations of [1–3], which are valid for the class of cylindrical vessels, and the requirements are satisfied that the resulting nonlinear equations correspond to the widely adopted linearized equations of liquid oscillations [4–6], Nonlinear equations are obtained which describe liquid oscillations in arbitrary vessels of rotation with radial baffles.  相似文献   

11.
The instability and regular nonlinear waves in the film of a heavy viscous liquid flowing along the wall of a round tube and interacting with a gas flow are investigated. The solutions for the wave film flows are numerically obtained in the regimes from free flow-down in a counter-current gas stream to cocurrent upward flow of the film and the gas at fairly large gas velocities. Continuous transition from the counter-current to the cocurrent flow via the state with a maximum amplitude of nonlinear waves and zero values of the liquid flow rate and the phase velocity is investigated. The Kapitsa-Shkadov method is used to reduce a boundary value problem to a system of evolutionary equations for the local values of the layer thickness and the liquid flow rate.  相似文献   

12.
Wavy downflow of viscous liquid films in the presence of a cocurrent turbulent gas flow is analyzed theoretically. The parameters of two-dimensional steady-state traveling waves are calculated for wide ranges of liquid Reynolds number and gas flow velocity. The hydrodynamic characteristics of the liquid flow are computed using the full Navier-Stokes equations. The wavy interface is regarded as a small perturbation, and the equations for the gas are linearized in the vicinity of the main turbulent flow. Various optimal film flow regimes are obtained for the calculated nonlinear waves branching from the plane-parallel flow. It is shown that for high velocities of the cocurrent gas flow, the calculated wave characteristics correspond to those of ripple waves observed in experiments.  相似文献   

13.
Using spherical coordinates, the coupling nonlin- ear dynamic system of a liquid-filled spherical tank, which can be excited discretionarily, is deduced by the H-O variational principle, and the viscous damping is introduced via the liquid dissipation function. The kinetic equations of the coupling system are deduced by the relationship between the velocity of liquid particles and the disturbed liquid surface equation. Normal differential equations are obtained through the Galerkin method. An equivalent mechanical model is developed for liquid sloshing in a spherical tank subject to arbitrary excitation. The fixed and slosh masses, as well as the spring and damping constants, are determined in such a way as to satisfy the principle of equivalence. Numerical simulations illustrate the theoretical results in this paper as well.  相似文献   

14.
The effect of internal heating source on the film momentum and thermal transport characteristic of thin finite power-law liquids over an accelerating unsteady horizontal stretched interface is studied. Unlike most classical works in this field, a general surface temperature distribution of the liquid film and the generalized Fourier’s law for varying thermal conductivity are taken into consideration. Appropriate similarity transformations are used to convert the strongly nonlinear governing partial differential equations (PDEs) into a boundary value problem with a group of two-point ordinary differential equations (ODEs). The correspondence between the liquid film thickness and the unsteadiness parameter is derived with the BVP4C program in MATLAB. Numerical solutions to the self-similarity ODEs are obtained using the shooting technique combined with a Runge-Kutta iteration program and Newton’s scheme. The effects of the involved physical parameters on the fluid’s horizontal velocity and temperature distribution are presented and discussed.  相似文献   

15.
When the surface temperature of a liquid is a harmonic function of time with a frequency, a temperature wave propagates into the liquid. The amplitude of this wave decreases exponentially with distance from the surface. The temperature oscillation is essentially concentrated in a layer of the order of (2/)1/2, where x is the thermal conductivity of the liquid (thermal boundary layer). Depending on the phase, at certain positions below the surface the temperature gradient is directed downwards and if its magnitude is sufficiently large (the magnitude is a function of the amplitude and frequency of the surface oscillations) the liquid can become unstable with respect to the onset of convection. In that case the convective motion may spread beyond the initial unstable layer. For low frequencies the stability condition can be derived from the usual static Rayleigh criterion, on the basis of the Rayleigh number and the average temperature gradient of the unstable layer. This quasi-static approach, used by Sal'nikov [1], is appropriate to those cases in which the period of the temperature oscillations is much larger than the characteristic time of the perturbations. But when these times are of the same order, the problem must be analyzed in dynamic terms. The stability problem must then be formulated as a problem of parametricresonance excitation of velocity oscillations due to the action of a variable parameter-the temperature gradient.In an earlier work [2] we considered the problem of the stability of a horizontal layer of liquid with a periodically varying temperature gradient. It was assumed that the thickness of the layer was much smaller than the penetration depth of the thermal wave, so that the temperature gradient could be assumed to be independent of position. In the present work we consider the opposite case, in which the liquid layer is assumed to be much larger than the penetration depth, i. e., a thermal boundary layer can be defined. The temperature gradient at equilibrium, which is a parameter in the equations determining the onset of perturbations, is here a periodic function of time and a relatively complicated function of the depth coordinate z. The periodic oscillations are solved by the Fourier method; the equations for the amplitudes are solved by the approximate method of KarmanPohlhausen.The authors are grateful to L. G. Loitsyanskii for helpful criticism.  相似文献   

16.
The steady laminar boundary layer flow and heat transfer from a warm, laminar liquid flow to a melting surface moving parallel to a constant free stream is studied in this paper. The continuity, momentum and energy equations, which are coupled nonlinear partial differential equations are reduced to a set of two nonlinear ordinary differential equations, before being solved numerically using the Runge–Kutta–Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting parameter, moving parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. It is found that the problem admits dual solutions.  相似文献   

17.
An investigation is made of the development of convective flows of a viscous incompressible liquid, subjected to high-frequency vibration. The nonlinear equations of convection are used in the Boussinesq approximation, averaged in time. The amplitude of the perturbations is assumed to be small, but finite. For a horizontal layer with solid walls the existence of both subcritical and supercritical stable secondary conditions is established. In a linear statement, the problem of stability in the presence of a modulation has been discussed in [1–3]. Articles [4–6] were devoted to investigation of the nonlinear problem. In [4], the method of grids was used to study secondary conditions in a cavity of square cross section. In the case of a horizontal layer with free boundaries [5, 6], the character of the branching is established by the method of a small parameter.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 90–96, March–April, 1976.The authors thank I. B. Simonenko for his useful evaluation of the work.  相似文献   

18.
Linear and nonlinear initial-value problems are discussed for planar inviscid disturbances in streamlined near-wakes. This is mostly for those areas of near-wake flow where the basic motion comprises nearly uniform shear with or without normal influx into the accompanying viscous interfacial layer, although agreement is found with linear properties for full velocity profiles of double-Blasius, double-Jobe–Burggraf, Hakkinen–Rott and Goldstein form. With nonlinear disturbances, wavelike initial conditions yield a known critical-layer development, whereas more general, non-wave, initial conditions lead to a new integro-partial-differential amplitude equation which is studied analytically and numerically. The solutions show decay, finite-time blowup or nonlinear upstream-travelling disturbances. The normal influx proves crucial. Absolute and upstream- or downstream-convective instability is encountered (depending on the profiles, and flow reversal, for example); and in generic cases (for any thin airfoil) nonlinearity is shown analytically to provoke upstream convection. Increased nonlinearity drives the typical transition point extremely close to the trailing edge. Comparisons are made with three-dimensional behaviour in the linear case and with a direct simulation in the nonlinear regime.  相似文献   

19.
An analysis is presented to investigate the effects of thermophoresis and variable viscosity on MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the R.K. Gill and shooting methods. Favorable comparison with previously published work is performed. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号