首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
为了研究层合壳脱层,本文首先建立了柱坐标系下Hamilton 正则方程的8 节点等参元列式;然后分别采用了"先分后合" 模型和"弱粘接" 模型对开口壳的脱层损伤进行了模拟;通过利用层间的力学关系建立了整个壳的求解方程;最后分别从粘接完好和脱层两类情况对开口壳进行研究,并计算脱层前缘裂纹扩展的能量释放率. 数值实例的分析结果表明环向脱层受外载荷影响大于轴向脱层外载荷影响,脱层深度对两类脱层模型影响较大.  相似文献   

2.
This paper presents critical cooling rates to avoid cracking in thermal barrier coatings (TBCs) driven by thermal transients. A complete thermomechanical model is presented for multilayers; it determines the history of temperature, deformation and stress distributions in the layers, as well as the steady-state energy release rate (ERR) for delamination for all possible crack locations. The model is used to analyze bilayers over a broad range of properties and cooling rates; critical cooling rates are identified that distinguish scenarios in which the transient delamination driving force is higher than that associated with the fully cooled state. Implications for coating the durability are discussed.  相似文献   

3.
This paper presents an analytical solution for the thermoelastic stress in a typical in-plane’s thin-film micro-thermoelectric cooling device under different operating conditions. The distributions of the permissible temperature fields in multilayered thin-films are analytically obtained, and the characteristics, including maximum temperature difference and maximum refrigerating output of the thermoelectric device, are discussed for two operating conditions. Analytical expressions of the thermoelastic stresses in the layered thermoelectric thin-films induced by the temperature difference are formulated based on the theory of multilayer system. The results demonstrate that, the geometric dimension is a significant factor which remarkably affects the thermoelastic stresses. The stress distributions in layers of semiconductor thermoelements, insulating and supporting membrane show distinctly different features. The present work may profitably guide the optimization design of high-efficiency micro-thermoelectric cooling devices.  相似文献   

4.
This paper deals with the formulation of a mechanical/numerical model for analyzing the delamination effects of layered composite beams. The laminate is modelled through a multiple-beam model and interfacial constitutive laws are obtained by introducing interlaminar bilateral and unilateral springs. Delamination growth is described by employing the classical energy release rate criterion. A path-following procedure with delamination growth control is presented for the numerical analysis of the given model. Numerical results on delamination buckling and growth in compressed beams are given and comparisons with simplified theories are established.  相似文献   

5.
The simulation of the delamination process in laminated composite plates is quite complex and requires advanced finite element modeling techniques. Failure analysis tools must be able to predict initiation, size and propagation of delamination process. This paper presents the p-convergent partial discrete-layer elements with the virtual crack closure technique (VCCT) for the delamination analysis of laminated composite plates. The proposed element can be formulated by the suitable dimensional reduction from three-dimensional solid to two-dimensional plate. It is assumed that the piecewise linear variation of in-plane displacements and the constant value of out-of-plane displacements across the thickness. The higher-order approximation based on integrals of Legendre polynomials is used to define displacement fields. The three-dimensional VCCT is also slightly modified to incorporate with the proposed elements to estimate the energy release rate. The initiation of delamination occurs when the energy release rate for a displacement increment is same as the critical energy release rate corresponding to fracture toughness. The approach is to use a fracture mechanics criterion, but to avoid the complex moving mesh technique. At first, the validation and characteristic of the proposed elements are investigated on isotropic plates and orthotropic laminated plates, compared with referenced values. Then for fracture analysis, the efficiency of proposed approach is demonstrated with the help of additionally two problems such as the double-cantilever-beam test and the orthotropic laminated square plate with interior delamination.  相似文献   

6.
The coupled thermomechanical numerical analysis of composite laminates with bridged delamination cracks loaded by a temperature gradient is described. The numerical approach presented is based on the framework of a cohesive zone model. A traction-separation law is presented which accounts for breakdown of the micromechanisms responsible for load transfer across bridged delamination cracks. The load transfer behavior is coupled to heat conduction across the bridged delamination crack. The coupled crack-bridging model is implemented into a finite element framework as a thermomechanical cohesive zone model (CZM). The fundamental response of the thermomechanical CZM is described. Subsequently, bridged delamination cracks of fixed lengths are studied. Values of the crack tip energy release rate and of the crack heat flux are computed to characterize the loading of the structure. Specimen geometries are considered that lead to crack opening through bending deformation and buckling delamination. The influence of critical mechanical and thermal parameters of the bridging zone on the thermomechanical delamination behavior is discussed. Bridging fibers not only contribute to crack conductance, but by keeping the crack opening small they allow heat flux across the delamination crack to be sustained longer, and thereby contribute to reduced levels of thermal stresses. The micro-mechanism based cohesive zone model allows the assessment of the effectiveness of the individual mechanisms contributing to the thermomechanical crack bridging embedded into the structural analysis.  相似文献   

7.
The elasto-plastic postbuckling of fiber metal laminated beams with delamination and the energy release rate along the delamination front are discussed in this paper. Considering geometrical nonlinearity, thermal environment and geometrical initial imperfection, the incremental nonlinear equilibrium equations of delaminated fiber metal laminated beams are established,which are solved using the differential quadrature method and iterative method. Based on these,according to the J-integral theory, the elasto-plastic energy release rate is studied. The effects of some important parameters on the elasto-plastic postbuckling behavior and energy release rate of the aramid reinforced aluminum laminated beams are discussed in details.  相似文献   

8.
Based on beam-shaped-function, the analytical solution for composite plates with arbitrary embedded delaminations is presented. The deflection function of the delaminated plate is composed by those of beams with the corresponding loading and support conditions, which can be easily and accurately derived from the beam analysis, and the deflection amplitude is derived by the minimum potential energy principle. The closed form solutions of displacements, stresses, and energy release rate of a composite plate containing an arbitrarily embedded rectangular delamination are obtained and compared with the three-dimensional finite element results to validate the accuracy of this present method. Furthermore, the influences of delamination depth, length, central position, and modulus mismatch ratio (E 1/E 2) of the upper and lower sublaminate on the energy release rate are discussed.  相似文献   

9.
The delamination energy and fracture behaviour under static and dynamic mode I loading of two composites, made of the same unidirectional carbon reinforcement embedded in two different matrices, one tough and the other brittle, was investigated with the aim of analyzing the influence of the employed resin on the fatigue delamination behaviour of both composites. In the case of dynamic loading, the number of cycles necessary for the onset of delamination was determined for a given elastic energy release rate and crack growth rate for different critical energy rates. The double cantilever beam (DCB) test was found to be suitable for promoting the initial delamination. The experimental results confirm the enhanced performance of the tough resin both in terms of crack initiation and growth rate.  相似文献   

10.
基于修正的Hahn-Tsai非线性本构关系,用准三维有限单元分析了由层间应力引起的材料沿厚度方向的非线性对复合材料层板分层后屈及能量释放率的影响,结果表明材料非线性对能量释放率的影响与后屈曲形态密切相关,其中对Ⅱ型分层能量释放率的影响较大,而分层尖端应力场降低,局部变形增大。  相似文献   

11.
An analytical study of delamination in the crack lap shear beam is performed. It is assumed that the material is functionally graded along the width and height of the beam. Delamination is studied in terms of the total strain energy release rate by applying methods of linear-elastic fracture mechanics. An additional analysis of the total strain energy release rate is performed by considering the strain energies in the beam cross sections ahead of and behind the crack front for verification. The effects of the crack location and material gradient on delamination are evaluated.  相似文献   

12.
Delamination in sandwich structures along the interface between the face sheet and the core, or along the adherend/adhesive interface in adhesively bonded joints, is one of the most common failure modes of this type of tri-layer structure. This delamination is usually modeled as an interface crack problem, for which the energy release rate and phase angle can be calculated using interface fracture mechanics solutions. Existing interface fracture mechanics solutions, however, ignore the effect of transverse shear deformation, which can be significant for short crack. In an effort to overcome this shortcoming, this study presents new analytical solutions for the energy release rate and for the phase angle of the interface crack in sandwich structures or adhesively bonded joints. Since the new solutions incorporate relative rotation at the tip of the delamination, transverse shear effects are taken into account in this study. Typical delaminated sandwich and adhesively bonded joint specimens are analyzed by using the new solutions, as well as by the existing solutions. The energy release rate predicted by the present model agrees very well with that predicted by FEA, and furthermore it is considerably more accurate relative to existing models. As the existing model neglects the transverse shear force, it underestimates the total energy release rate. A stress field analysis is also conducted in this study in order to clarify some misunderstandings in the literature on the determination of the phase angle of adhesively bonded joints using an interface stress-based method.  相似文献   

13.
湿热条件下具脱层压电层合梁的后屈曲及脱层扩展分析   总被引:1,自引:0,他引:1  
考虑湿热条件、横向剪切变形、几何非线性和压电效应的影响,建立具脱层压电层合梁的本构关系和非线性平衡微分方程,采用有限差分法和迭代法对问题进行求解;在此基础上.应用Griffith准则,导出了脱层前缘处的能量释放率表达式,讨论了不同因素对压电层合梁后屈曲性能和脱层扩展的影响.  相似文献   

14.
This paper is the continuation of the authors' previous investigation inwhich the formula of total energy release rate at each point along the delaminationboundary iS derived by using variational method of moving boundary.In the presentpaper,the analytical model is reformed and the individual components of energyrelease rate are derived in the form of plate theory.The circular delaminationembedded in circular laminates is analysed and some conclusions are obtained.  相似文献   

15.
A compression-induced buckling delamination test is employed to quantitatively characterize the interfacial adhesion of Ni thin film on steel substrate. It is shown that buckles initiate from edge flaws and surface morphologies exhibit symmetric, half-penny shapes. Taking the elastoplasticity of film and substrate into account, a three-dimensional finite element model for an edge flaw with the finite size is established to simulate the evolution of energy release rates and phase angles in the process of interfacial buckling-driven delamination. The results show that delamination propagates along both the straight side and curved front. The mode II delamination plays a dominant role in the process with a straight side whilst the curved front experiences almost the pure mode I. Based on the results of finite element analysis, a numerical model is developed to evaluate the interfacial energy release rate, which is in the range of 250–315 J/m2 with the corresponding phase angle from −41° to −66°. These results are in agreement with the available values determined by other testing methods, which confirms the effectiveness of the numerical model.  相似文献   

16.
We study the thermoelectric field for an electrically and thermally insulated coated hole of arbitrary shape embedded in an infinite nonlinearly coupled thermoelectric material subject to uniform remote electric current density and uniform remote energy flux. A conformal mapping function for the coating and matrix is introduced, which simultaneously maps the hole boundary and the coating-matrix interface onto two concentric circles in the image plane. Using analytic continuation, we derive a general solution in terms of two auxiliary functions. The general solution satisfies the insulating conditions along the hole boundary and all of the continuity conditions across the perfect coating-matrix interface. Once the two auxiliary functions have been obtained in the elementary-form, the four original analytic functions in the coating and matrix characterizing the thermoelectric fields are completely and explicitly determined. The design of a neutral coated circular hole that does not disturb the prescribed thermoelectric field in the thermoelectric matrix is achieved when the relative thickness parameter and the two mismatch parameters satisfy a simple condition. Finally, the neutrality of a coated circular thermoelectric inhomogeneity is also accomplished.  相似文献   

17.
In this paper, the postbuckling governing equations and the analytical expression of the energy release rates associated with delamination growth in a compression-loaded cylindrical shell are derived by using the variational principle of moving boundary and the Griffith fracture criterion. The finite difference method is used to generate the postbuckling solutions of the delaminated cylindrical shells, and with these solutions, the values of the energy release rates are determined. In simulational examples, the effects of a wide range of parameters, such as delamination sizes and depths, boundary conditions, geometrical parameters, material properties and laminate stacking sequences on the energy release rates of axisymmetrical laminated cylindrical shells are intensively discussed.The English text was polished by Yunming Chen.  相似文献   

18.
A novel approach is proposed for the use of cohesive elements in the analysis of delamination propagation in composite materials under high-cycle fatigue loading. The method is applicable to delamination propagation within the Paris-law regime and is suitable for the analysis of three-dimensional structures typical of aerospace applications. The major advantages of the proposed formulation are its complete independence of the cohesive zone length – which is a geometry-dependent parameter – and its relative insensitivity to mesh refinement. This is only possible via the introduction of three nonlocal algorithms, which provide (i) automated three-dimensional tracking of delamination fronts, (ii) an estimation of direction of crack propagation and (iii) accurate and mesh-insensitive integration of strain energy release rate. All calculations are updated at every increment of an explicit time-integration finite element solution, which models the envelopes of forces and displacements with an assumption of underlying constant cyclic loading. The method was implemented as a user-defined subroutine in the commercial finite element software LS-Dyna and supports the analysis of complex three-dimensional models. Results are presented for benchmark cases such as specimens with central cut plies and centrally-loaded circular plates. Accurate predictions of delamination growth rates are observed for different mesh topologies in agreement with the Paris-laws of the material.  相似文献   

19.
基于可动边界变分原理对层合梁脱层扩展进行了分析;考虑了脱层间的接触效应,建立了层合梁在横向线载荷作用下的非线性控制微分方程及相应的定解条件;应用Griffith准则导出了脱层前缘各点处的能量释放率表达式;通过算例讨论了脱层长度、脱层深度、几何尺寸、材料性质等因素对脱层扩展的影响.研究表明:脱层越长、越深、横向载荷越大,脱层越容易扩展;梁的长高比L/h及材料的E_(11)/E_(22)越大,脱层越不易发生扩展.  相似文献   

20.
含分层损伤复合材料层合板分层扩展研究   总被引:13,自引:0,他引:13  
采用基于Mindlin-阶剪切理论的四节点板单元,分析了含椭圆分层合板分层扩展行为。利用虚裂纹闭合技术计算分层前缘处的总能量释放率,并采用总能量释放率准则作为扩展准则,结合自适应网格移动技术,并考虑了分层前缘闭合接角效应,对 合材料层合板的分层扩展行为进行了模拟分析。结果表明,初始分层形状对其扩展有方式有限大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号