首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
非牛顿流体在渐变管中压力和剪切应力的二次摄动解   总被引:1,自引:0,他引:1  
本文利用双摄动方法求解缓慢变化管道中Johnson-Segalman(J-S)流体流动的渐近解.将管道的扩张(或收缩)角度和粘弹性参数分别作为双摄动的参数,由流函数和涡量函数的形式,推导出压力和壁面剪切应力的渐近解.在此基础上,分析了管道角度,粘弹性参数和雷诺数等参数对压力以及剪切力影响.主要结论如下:(1) 管道扩张角度增加时,流向同一位置处径向压力以及壁面剪切应力随扩张角度减小;(2) 在同一扩张管道中,径向压力随着流向位移减小,收缩管与之相反;(3) 扩张角度与雷诺数对流场起主导作用,粘弹性系数起次要作用.  相似文献   

2.
Flow in a circular pipe is investigated experimentally at Reynolds numbers higher than that at which the resistance coefficients calculated from the Blasius formula for laminar flow and from the Prandtl formula for turbulent flow are equal. The corresponding Reynolds number based on the mean-flow velocity and the pipe diameter is about 1000. The experiments were performed at a high level of inlet pulsations produced by feeding gas into the pipe through a hole with a diameter several times smaller than the pipe diameter. In our experiments the critical Reynolds number was determined as the value, independent of the distance from the inlet, at which the ratio of the axial to the mean-flow velocity as a function of the Reynolds number deviated from 2. At the maximum ratio of the pipe cross-sectional area to the area of the hole through which the gas entered the pipe, equal to 26, the critical Reynolds number was about 2300. After a fivefold increase in the hole area the critical Reynolds number increased by approximately 4%.At Reynolds numbers below 2000, after at a high level of the inlet pulsations an almost laminar flow had developed in the pipe, a perturbation was introduced by inserting a diametrically oriented cylindrical rod with a diameter 10–20 times smaller than the pipe diameter. In these experiments, at Reynolds numbers higher than 1000, at a distance from the rod equal to 50 pipe diameters the axial to mean-flow velocity ratio was less than 2, approaching this value again at large distances from the rod. The insertion of the rod led to a decrease in the critical Reynolds number by approximately 12%.  相似文献   

3.
Using nuclear magnetic resonance (NMR) flow imaging to examine fluid motions at constant velocities or flows that change relatively slowly has been well-documented in the literature. Application of this technique to accelerative flows, on the other hand, has been limited. This study reports the use of an NMR flow imaging method, for which acceleration is not explicitly compensated in the NMR pulse sequence, to measure axial and radial fluid motions during flow through an axisymmetric sudden contraction. In this flow geometry, both velocity and acceleration are spatially dependent. The flow contraction ratio was 2:1. The method was first applied to examine Newtonian liquids at low and high Reynolds numbers under laminar flow conditions. The measured axial and radial velocity profiles, without accounting for acceleration effects in the data analysis, across the contraction are in excellent qualitative agreement with previous experimental data and theoretical calculations reported in the literature. Quantitative comparison of the axial and radial velocities with numerical results indicates that the maximum error from acceleration effects is about 10%. The method has also been used to examine the flow of a concentrated suspension (50% by volume of solid particles) through the contraction. The flow kinematics of the suspension at creeping flow conditions appear to mimic those of the Newtonian fluid with some slight differences. NMR images taken immediately following the cessation of flow suggest a slight degree of particle migration toward the center of the pipe downstream of the contraction.  相似文献   

4.
The cases of large Reynolds number and small expansion ratio for the asym- metric laminar flow through a two-dimensional porous expanding channel are considered. The Navier-Stokes equations are reduced to a nonlinear fourth-order ordinary differential equation by introducing a time and space similar transformation. A singular perturbation method is used for the large suction Reynolds case to obtain an asymptotic solution by matching outer and inner solutions. For the case of small expansion ratios, we are able to obtain asymptotic solutions by double parameter expansion in either a small Reynolds number or a small asymmetric parameter. The asymptotic solutions indicate that the Reynolds number and expansion ratio play an important role in the flow behavior. Nu- merical methods are also designed to confirm the correctness of the present asymptotic solutions.  相似文献   

5.
In this paper we consider the steady flow of a viscous fluid through a channel bounded by two sinusoidally varying plates differing in phase by π and separated by a mean distance 2h. For the non-varying channel, the classical parabolic velocity profile for the fully developed flow is well known. An attempt here is made to analyze the flow in a generalized non-orthogonal coordinate system that renders the wavy channels as plane walls. Continuity equation and Navier-Stokes equations are presented in the generalized coordinate system and simplified through use of small perturbation under small Reynolds number approximation. Flow characteristics such as centerline velocity and drag force have been evaluated and discussed.  相似文献   

6.
Summary The steady laminar flow of a viscous incompressible fluid through a two-dimensional channel, having fluid sucked or injected with different velocities through its uniformly porous parallel walls is considered. A solution for small suction Reynolds number has been given by the authors in a previous paper. The purpose of this paper is to present a solution valid for large Reynolds numbers for the cases of (i) suction at both walls, and (ii) suction at one wall and injection at the other. A technique of matching outer and inner expansions is used to obtain an asymptotic solution for both of these cases. Further a perturbation solution for the case of suction at one wall and injection at the other is obtained by choosing the difference between two wall velocities as the perturbation parameter. Both asymptotic and perturbation solutions are confirmed by exact numerical solutions. As expected, the resulting solutions show the presence of the usual suction boundary layers in both types of flow considered in this paper.  相似文献   

7.
The fully developed steady flow of a fluid through a curved tube with elliptic cross-section is studied, the cross-sectional area varying slowly with longitudinal distance. Using a perturbation scheme in terms of two small parameters (geometric parameter and curvature parameter), complete analytical solutions are obtained to the first order. The effects of constriction combined with constant curvature of the centre line are discussed. The phenomenon of secondary flow, shear stress and the increased impedance (due to the constriction) are calculated. The possibility of the application of the results to various engineering problems and physiological flows is indicated.  相似文献   

8.
We address the flow of incompressible fluid with a pressure-dependent viscosity through a pipe with helical shape. The viscosity-pressure relation is defined by the Barus law. The thickness of the pipe and the helix step are assumed to be of the same order and considered as the small parameter. After transforming the starting problem, we compute the asymptotic solution using curvilinear coordinates and standard perturbation technique. The solution is provided in the explicit form clearly showing the influence of viscosity-pressure dependence and pipe's geometry on the effective flow.  相似文献   

9.
This paper presents a discussion of the results and conclusions drawn from a series of experiments conducted to investigate the swirl flow that are generated by a three lobed helical pipe mounted within a laboratory scale pneumatic conveying rig. The experiments employed Laser Doppler Anemometry (LDA) to quantify the strength of the induced vortex formations and the decay rates of the observed downstream swirl flows over a range of Reynolds number in the turbulent regime. Instantaneous point velocity measurements were resolved in three directions across regular measurement grids transcribed across parallel planes located at four distances downstream of the swirl inducing pipe section. The equivalent axial, radial and tangential velocities were subsequently computed at these grids points. The degree of swirl measured across each measurement plane was expressed in terms of a defined swirl number.It was concluded that the three lobed helical pipe gave rise to a wall jet type of swirl whose rate of observed downstream decay is related to the Reynolds number of the upstream flow and the distance downstream of the swirl pipe. The decay rates for the swirl flows were found to be inversely proportional to the Reynolds number of the upstream flow. The swirl pipe was observed to create a redistribution of the downstream velocity field from axial to tangential, accompanied by a transfer of axial to angular momentum. The findings of this paper are believed to improve understanding to assist the selective use of swirl flow within lean phase particles pneumatic transport systems.  相似文献   

10.
应用共轴型二维激光测速系统测量孔板管流的湍流特性   总被引:1,自引:0,他引:1  
本文发表了一种共轴型二维激光测速系统,可同时测量由三束入射光组成的平面内的二维速度分量。讨论了主要的测量误差并提出了一种修正共轴分量角度偏差的方法。应用该系统详细测量了单孔板和双孔板管流的轴向和径向平均速度。湍流度和雷诺切应力分布,表明来流条件对孔板下游的湍流特性有强烈影响。  相似文献   

11.
The developing flow in a semi-infinite pipe is solved for by an eigenfunction method. The results are applicable to zero and low Reynolds number flows. The eigenfunction method yields a solution which accurately predicts overshoots in the axial velocity for small axial positions. Results are presented for both uniform and non-uniform inlet conditions. The latter condition has important implications for numerical simulations of the developing flow problem.This research was performed while Mr Benson was a graduate student at Clarkson College, Potsdam, NY, USA.  相似文献   

12.
The problem of a two-dimensional steady flow of a second-grade fluid in a converging porous channel is considered. It is assumed that the fluid is injected into the channel through one wall and sucked from the channel through the other wall at the same velocity, which is inversely proportional to the distance along the wall from the channel origin. The equations governing the flow are reduced to ordinary differential equations. The boundary-value problem described by the latter equations is solved by the homotopy perturbation method. The effects of the Reynolds and crossflow Reynolds number on the flow characteristics are examined.  相似文献   

13.
A laser anemometer has been used to study the region of accelerating shear flow near the exit of a vertical tube. It is in this region that the transition between steady laminar shear flow in the upstream tube and elongational flow in the downstream liquid jet takes place.Downstream velocity profiles were measured for solutions of 0.9% polyacrylamide in 85% glycerol/water and 0.9% polyacrylamide in water. Reynolds numbers (based on wall conditions in the fully developed upstream flow) ranged from 45 to 310 and Froude numbers from 0.294 to 4.11. Tubes, having sharpedged and rounded exit corners, with diameters of 1.25 cm and 1.90 cm were usedUpstream velocity profiles were measured for a solution of 0.9% polyacrylamide in water. Reynolds numbers ranged from 16 to 670. Only tubes having sharp-edged exit corners were used.It was found that the transition region did not extend upstream into the tube but was confined to the downstream jet. The transition took place over a distance of about 3–5 tube diameters depending upon the value of the Froude number. The axial distance downstream from the tube exit plane at which the velocity profile first became flat increased with increasing Froude number. The magnitude of the jet velocity at this point decreased with increasing Froude number.The condition of the tube exit corner was found to influence the flow in the transition region. Downstream velocity profiles obtained using tubes having rounded exit corners initially develop more slowly than, but soon catch up with and eventually overtake, the corresponding profiles obtained using tubes with sharp-edged exit corners.Downstream velocity profiles obtained for the 0.9% polyacrylamide in 85% glycerol/water solution were found to develop smoothly. The transition from steady shear flow in the tube to elongational flow in the jet took place through the combined processes of acceleration of the outer layers of the jet due to radial transfer of momentum with adjacent inner layers, the process spreading steadily inwards with increasing axial distance from the tube exit plane, and acceleration of the whole due to gravity. However, the velocity profiles obtained for the 0.9% polyacrylamide in water solution did not always develop so smoothly. At a Reynolds number of 310 and Froude number of 2.06 the radial momentum transfer process was restricted to a narrow outer region of the jet until a downstream axial distance of about 2 tube diameters was reached. Thereafter, the transition to a flat profile took place smoothly.  相似文献   

14.
Curved channels are ubiquitous in microfluidic systems. The pressuredriven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under the assumptions of the small curvature ratio and the Reynolds number. The results indicate that the curvature of the microtube leads to a skewed pattern in the distribution of the electrical double layer (EDL) potential. The EDL potential at the outer side of the bend is larger than that at the inner side of the bend. The curvature shows an inhibitory effect on the magnitude of the streaming potential field induced by the pressure-driven flow. Since the spanwise pressure gradient is dominant over the inertial force, the resulting axial velocity profile is skewed into the inner region of the curved channel. Furthermore, the flow rate in a curved microtube could be larger than that in a straight one with the same pressure gradient and shape of cross section. The asymptotic solutions of the axial velocity and flow rate in the absence of the electrokinetic effect are in agreement with the classical results for low Reynolds number flows. Remarkably, the curved geometry could be beneficial to improving the electrokinetic energy conversion (EKEC) efficiency.  相似文献   

15.
In this work, the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model, with particular focus on the mechanism of large-amplitude oscillations of the pipe under gravity. Four key parameters, including the flow velocity, the mass ratio, the gravity parameter, and the inclination angle between the pipe length and the gravity direction, are considered to affect the static and dynamic behaviors of the soft pipe. The stability ...  相似文献   

16.
生物芯片微通道周期性电渗流特性   总被引:5,自引:1,他引:4  
吴健康  王贤明 《力学学报》2006,38(3):309-315
以双电层的Poisson-Boltzmann方程和黏性不可压缩流体运动的Navier-Stokes方程为 基础,提出二维均匀微通道周期电渗流的解析解. 分析结果表明,周期电渗流速度大 小不但与双电层特性和外电场有关, 而且与流动雷诺数(Re = \omega h^2/\nu )密切相关. 随雷诺数增加,双电层滑移速度下降. 当离开固壁距离增加时,双电层以外区域流动速度快 速衰减,速度滞后相位角明显增加. 研究发现在微通道有波浪状速度剖面. 给出在低雷 诺数时的周期电渗流渐近解,它的速度振幅与定常电渗流速度相同,并具有柱栓式速度分布 形态. 还得到在微通道宽对双电层厚的比值(\kappa h)很小时,Debye-H\"{u}ckel近似 的周期电渗流解, 并与解析解进行分析比较 微通道,双电层,周期电渗流,雷诺数  相似文献   

17.
旋转流场中的流体流动比较复杂,特别是在高转速、微尺度工况时,流场中的流体流态及其判断方法缺乏完备的理论模型.选择干气密封作为高速旋转流场的研究对象,以开启力和泄漏量作为宏观特性表征指标参数,选择剪切(周向)、径向及轴向速度分量对速度流场进行介观表述,通过Fluent软件仿真计算大跨距转速(低转速至超高转速)时的宏观、介观指标参数,研究密封性能指标参数与速度场间的内在逻辑关系.结果表明:低速旋转流场中的轴向速度分量较小,可忽略不计,转速升高会促使轴向速度分量持续增大,当转速持续增大并超过某一临界值时,轴向速度分量会出现迅速升高的情形;轴向速度分量的变化情形与微尺度流场(开启力和泄漏量)波动密切相关,是影响旋转流场流态的关键性指标参数,也是引起宏观流场特性变化的主要因素;径向速度分量的变化情形与微尺度流场泄漏量的变化规律基本一致,随着转速的增大,泄漏量的宏观性能反馈要早于开启力波动的出现.基于以上研究,同时根据管道雷诺数、流量因子判定模型及流体力学基本理论,尝试提出了基于三维速度分量的针对旋转流场流态的椭球判定模型.  相似文献   

18.
环形截面螺旋管道内二次流动特性的研究   总被引:6,自引:0,他引:6  
张金锁  章本照 《力学学报》2001,33(2):183-194
从曲线柱坐标系下的N-S方程出发,以曲率和挠率为小参数,采用摄动法求解了环形截面螺旋管道内的黏性流动,给出了完全二阶摄动解,结果表明:当挠率为零时,二次流表现为上下对称的四个涡;当挠率不为零,涡的对称性遭到破坏,二次涡的强度和个数受De数和环形截面内外径之比δ的影响,轴向速度最大值在De数较小时靠近管道的内侧,随着De数的增加,其最大值向外侧移动。  相似文献   

19.
This paper presents a numerical study of the transient developing laminar flow of a Newtonian incompressible fluid in a straight horizontal pipe oscillating around the vertical diameter at its entrance. The flow field is influenced by the tangential and Coriolis forces, which depend on the through‐flow Reynolds number, the oscillation Reynolds number and the angular amplitude of the pipe oscillation. The impulsive start of the latter generates a transient pulsating flow, whose duration increases with axial distance. In any cross‐section, this flow consists of a pair of symmetrical counter‐rotating vortices, which are alternatively clockwise and anti‐clockwise. The circumferentially averaged friction factor and the axial pressure gradient fluctuate with time and are always larger than the corresponding values for a stationary pipe. On the other hand, local axial velocities and local wall shear stress can be smaller than the corresponding stationary pipe values during some part of the pipe oscillation. The fluctuation amplitude of these local variables increases with axial distance and can be as high as 50% of the corresponding stationary pipe value, even at short distances from the pipe entrance. Eventually, the flow field reaches a periodic regime that depends only on the axial position. The results show that the transient flow field depends on the pipe oscillation pattern (initial position and/or direction of initial movement). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
In this note, the problem of an incompressible viscous fluid moving through a porous medium (Brinkman model) between two wavy plates under the effects of a constant inclined magnetic field that makes an angle with the vertical axis and constant suction, are studied numerically by a method related to the method of Takabatake and Ayukawa in 1982. The present approach is not restricted by any of the parameters appearing in the problem such as Reynolds number, magnetic parameter, suction parameter, the wave number and amplitude ratio. The variations in velocity, flow rate and pressure gradient with the above governing parameters are presented. Moreover, the effect of varying the porous medium and the inclined angle is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号