首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The burgeoning demand for clean and energy-efficient fuel cell system requires electrocatalysts to deliver greater activity and selectivity. Bimetallic catalysts have proven superior to single metal catalysts in this respect. This work reports the preparation, characterization, and electrocatalytic characteristics of a new bimetallic nanocatalyst. The catalyst, Pt-Au-graphene, was synthesized by electrodeposition of Pt-Au nanostructures on the surface of graphene sheets, and characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), and voltammetry. The morphology and composition of the nanocatalyst can be easily controlled by adjusting the molar ratio between Pt and Au precursors. The electrocatalytic characteristics of the nanocatalysts for the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) were systematically investigated by cyclic voltammetry. The Pt-Au-graphene catalysts exhibits higher catalytic activity than Au-graphene and Pt-graphene catalysts for both the ORR and the MOR, and the highest activity is obtained at a Pt/Au molar ratio of 2:1. Moreover, graphene can significantly enhance the long-term stability of the nanocatalyst toward the MOR by effectively removing the accumulated carbonaceous species formed in the oxidation of methanol from the surface of the catalyst. Therefore, this work has demonstrated that a higher performance of ORR and the MOR could be realized at the Pt-Au-graphene electrocatalyst while Pt utilization also could be greatly diminished. This method may open a general approach for the morphology-controlled synthesis of bimetallic Pt-M nanocatalysts, which can be expected to have promising applications in fuel cells.  相似文献   

2.
Journal of Solid State Electrochemistry - It has been suggested that the presence of adsorbed impurities, such as capping agent or organic reaction products adsorbed on the metallic nanoparticles,...  相似文献   

3.
Gold nanoparticles (AuNPs) were assembled with high density onto multi-walled carbon nanotubes, which were functionalized with zwitterionic poly(imidazoliumsulfonate). The AuNP/zwitterionic CNT hybrids exhibited decent electrocatalytic activity in oxygen reduction reaction as the AuNP-based catalysts.  相似文献   

4.
In this work, hollow Au/Pt alloy nanoparticles (NPs) with porous surfaces were synthesized in a two-step procedure. In the first step, tri-component Ag/Au/Pt alloy NPs were synthesized through the galvanic replacement reaction between Ag NPs and aqueous solutions containing a mixture of HAuCl4 and H2PtCl4. In the second step, the Ag component was selectively dealloyed with nitric acid (HNO3), resulting in hollow di-component Au/Pt alloy NPs with a porous surface morphology. The atomic ratio of Au to Pt in the NPs was easily tunable by controlling the molar ratio of the precursor solution (HAuCl4 and H2PtCl6). Hollow, porous Au/Pt alloy NPs showed enhanced catalytic activity toward formic acid electrooxidation compared to the analogous pure Pt NPs. This improved activity can be attributable to the suppression of CO poisoning via the “ensemble” effect.  相似文献   

5.
A new synthesis method for the preparation of high-performance PtRu electrocatalysts on multiwalled carbon nanotubes (MWCNTs) is reported. In this method, bimetallic PtRu electrocatalysts are deposited onto 1-aminopyrene (1-AP)-functionalized MWCNTs by a microwave-assisted polyol process. The noncovalent functionalization of MWCNTs by 1-AP is simple and can be carried out at room temperature without the use of expensive chemicals or corrosive acids, thus preserving the integrity and the electronic structure of MWCNTs. PtRu electrocatalysts on 1-AP-functionalized MWCNTs show much better distribution with no formation of aggregates, higher electrochemically active surface area, and higher electrocatalytic activity for the electrooxidation of methanol in direct methanol fuel cells as compared to that on conventional acid-treated MWCNTs and carbon black supported PtRu electrocatalysts. PtRu electrocatalysts on 1-AP-functionalized MWCNTs also show significantly enhanced stability.  相似文献   

6.
The pyrolyzed carbon supported ferrum polypyrrole(Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid(TsOH), by a facile thermal annealing approach at desired temperature for optimizing their activity for the oxygen reduction reaction(ORR) in O2-saturated 0.1 mol/L KOH solution. The electrochemical techniques such as cyclic voltammetry(CV) and rotating disk electrode(RDE) are employed with the Koutecky-Levich theory to quantitatively obtain the ORR kinetic constants and the reaction mechanisms. It is found that catalysts doped with TsOH show significantly improved ORR activity relative to the TsOH-free one. The average electron transfer numbers for the catalyzed ORR are determined to be 3.899 and 3.098, respectively, for the catalysts with and without TsOH-doping. The heat-treatment is found to be a necessary step for catalyst activity improvement, and the catalyst pyrolyzed at 600℃ gives the best ORR activity. An onset potential and the potential at the current density of-1.5 mA/cm2 for TsOH-doped catalyst after pyrolysis are 30 mV and 170 mV, which are more positive than those without pyrolized. Furthermore, the catalyst doped with TsOH shows higher tolerance to methanol compared with commercial Pt/C catalyst in 0.1 mol/L KOH. To understand this TsOH doping and pyrolyzed effect, X-ray diffraction(XRD), scanning electron microscope(SEM) and X-ray photoelectron spectroscopy(XPS) are used to characterize these catalysts in terms of their structure and composition. XPS results indicate that the pyrrolic-N groups are the most active sites, a finding that is supported by the correspondence between changes in pyridinic-N content and ORR activity that occur with changing temperature. Sulfur species are also structurally bound to carbon in the forms of C–Sn–C, an additional beneficial factor for the ORR.  相似文献   

7.
The pyrolyzed carbon supported ferrum polypyrrole(Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid(TsOH), by a facile thermal annealing approach at desired temperature for optimizing their activity for the oxygen reduction reaction(ORR) in O2-saturated 0.1 mol/L KOH solution. The electrochemical techniques such as cyclic voltammetry(CV) and rotating disk electrode(RDE) are employed with the Koutecky-Levich theory to quantitatively obtain the ORR kinetic constants and the reaction mechanisms. It is found that catalysts doped with TsOH show significantly improved ORR activity relative to the TsOH-free one. The average electron transfer numbers for the catalyzed ORR are determined to be 3.899 and 3.098, respectively, for the catalysts with and without TsOH-doping. The heat-treatment is found to be a necessary step for catalyst activity improvement, and the catalyst pyrolyzed at 600℃ gives the best ORR activity. An onset potential and the potential at the current density of-1.5 mA/cm2 for TsOH-doped catalyst after pyrolysis are 30 mV and 170 mV, which are more positive than those without pyrolized. Furthermore, the catalyst doped with TsOH shows higher tolerance to methanol compared with commercial Pt/C catalyst in 0.1 mol/L KOH. To understand this TsOH doping and pyrolyzed effect, X-ray diffraction(XRD), scanning electron microscope(SEM) and X-ray photoelectron spectroscopy(XPS) are used to characterize these catalysts in terms of their structure and composition. XPS results indicate that the pyrrolic-N groups are the most active sites, a finding that is supported by the correspondence between changes in pyridinic-N content and ORR activity that occur with changing temperature. Sulfur species are also structurally bound to carbon in the forms of C–Sn–C, an additional beneficial factor for the ORR.  相似文献   

8.
In this paper, the polyhedral Pt nanoparticles under control were prepared by polyol method using AgNO3 and poly(vinylpyrrolidone) (PVP) in the reduction of H2PtCl6 with ethylene glycol (EG). Transmission electron microscopy (TEM) and high resolution (HR) TEM measurements were used to investigate their characterization. In the case of the previous removal of PVP by washing and heating at 300°C, the specific morphologies of polyhedral Pt nanoparticles were still observed. However, the removal of PVP only by heat treatment at 300°C without washing causes the significant variation of their morphology. The large Pt particles were observed in the self-aggregation and assembly of the as-prepared polyhedral Pt nanoparticles. The pure Pt nanoparticles by washing and heat treatment showed the electrocatalytic property better than PVP-Pt nanoparticles by heat treatment due to the incomplete removal of PVP and by-products from AgNO3. Therefore, the removal modes of PVP without changing their characterization are required to obtain the good catalytic performance.  相似文献   

9.
10.
This report describes the preparation of Pt-nanoparticle-coated gold-nanoporous film (PGNF) on a gold substrate via a simple "green" approach. The gold electrode that has been anodized under a high potential of 5 V is reduced by freshly prepared ascorbic acid (AA) solution to obtain gold nanoporous film electrode. Then the Pt nanoparticle is grown on the electrode by cyclic voltammetry (CV). The resulting PGNF electrode has highly ordered arrangement and large surface area, as verified by scanning electron microscopy (SEM) and CV, suggesting that the nanoporous gold film electrode provides a good matrix for obtaining PGNF with high surface area. Furthermore, the as-prepared PGNF electrode exhibited high electrocatalytic activity toward methanol oxidation in a 0.5 M H 2SO 4 solution containing 1.5 M methanol. The present novel strategy is expected to reduce the cost of the Pt catalyst remarkably.  相似文献   

11.
The flower-like gold nanoparticles together with spherical and convex polyhedron gold nanoparticles were fabricated on boron-doped diamond (BDD) surface by one-step and simple electrochemical method through easily controlling the applied potential and the concentration of HAuCl(4). The recorded X-ray diffraction (XRD) patterns confirmed that these three shapes of gold nanoparticles were dominated by different crystal facets. The cyclic voltammetric results indicated that the morphology of gold nanoparticles plays big role in their electrochemical behaviors. The direct electrochemistry of hemoglobin (Hb) was realized on all the three different shapes of nanogold-attached BDD surface without the aid of any electron mediator. In pH 4.5 acetate buffer solutions (ABS), Hb showed a pair of well defined and quasi-reversible redox peaks. However, the results obtained demonstrated that the redox peak potential, the average surface concentration of electroactive heme, and the electron transfer rates of Hb are greatly dependent upon the surface morphology of gold nanoparticles. The electron transfer rate constant of hemoglobin over flower-like nanogold/BDD electrode was more than two times higher than that over spherical and convex polyhedron nanogold. The observed differences may be ascribed to the difference in gold particle characteristics including surface roughness, exposed surface area, and crystal structure.  相似文献   

12.
In view of the recent finding that the bimetallic AuPt nanoparticles prepared by molecular-capping-based colloidal synthesis and subsequent assembly on carbon black support and thermal activation treatment exhibit alloy properties, which is in sharp contrast to the bimetallic miscibility gap known for the bulk counterparts in a wide composition range, there is a clear need to assess the electrocatalytic properties of the catalysts prepared with different bimetallic composition and different thermal treatment temperatures. This paper reports recent results of such an investigation of the electrocatalytic methanol oxidation reaction (MOR) activities of the carbon-supported AuPt nanoparticle catalysts with different bimetallic composition and thermal treatment temperatures. Au(m)Pt(100)(-)(m) nanoparticles of 2-3 nm core sizes with different atomic compositions ranging from 10% to 90% Au (m = 10 approximately 90) have been synthesized by controlling the feeding of the metal precursors used in the synthesis. The electrocatalytic MOR activities of the carbon-supported AuPt bimetallic catalysts were characterized in alkaline electrolytes. The catalysts with 65% to 85% Au and treated at 500 degrees C were found to exhibit maximum electrocatalytic activities in the alkaline electrolytes. The findings, together with a comparison with some well-documented catalysts as well as recent experimental and theoretical modeling results, have revealed important insights into the participation of CO(ad) and OH(ad) on Au sites in the catalytic reaction of Pt in the AuPt alloys with approximately 75% Au. The insights are useful for understanding the correlation of the bifunctional electrocatalytic activity of the bimetallic nanoparticle catalysts with the bimetallic composition and the thermal treatment temperatures.  相似文献   

13.
The cathodic reduction of oxygen has been investigated at a gold nanoparticles-electrodeposited gold electrode in 0.5 M H2SO4 solution. Two well-defined reduction peaks were observed at +50 and −250 mV vs. Ag/AgCl/KCl (sat.). Those two peaks indicated a 2-step 4-electron reduction pathway of O2 in this strong acidic medium. The former peak was ascribable to the 2-electron reduction of O2 to H2O2, while the latter was assigned to the reduction of H2O2 to H2O. The observed electrocatalysis for the reduction of O2 is attributable to the extraordinary catalytic activity of the gold nanoparticles over the bulk gold electrode, at which the 2-electron reduction peak of O2 to H2O2 was observed at −200 mV.  相似文献   

14.
15.
Chlorophenyl-stabilized platinum nanoparticles (1.85 nm) exhibited electrocatalytic activity for oxygen reduction up to 3 times higher than that of commercial Pt/C catalysts. Similar enhancement was observed with naked Pt/C functionalized by the same chlorophenyl fragments, suggesting the important role of organic capping ligands in the manipulation of nanoparticle electrocatalytic performance.  相似文献   

16.
Polypyrrole nanotubes (PPyNTs)/Pt nanoparticle hybrids were synthesized by using covalently attached imidazolium-type ionic liquids (ILs) as linkers. The resultant Pt/ILs/PPyNTs hybrids exhibited high electrocatalytic activity in electrocatalytic oxidation of methanol.  相似文献   

17.
The polyaniline/polysulfone (PAN/PSF) composite films were prepared by electropolymerization, and then platinum was deposited into this composite film to obtain the platinum-modified polyaniline/polysulfone(Pt/PAN/PSF) composite film electrodes. Their component, morphology and structure were characterized by FTIR spectra, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results show that the composite film has a bi-layer structure with asymmetrical pores, and the platinum particles are homogeneously dispersed in the modified film electrodes. The cyclic voltammetry and electrochemical impedance spectroscopy techniques were applied to investigate the electrochemical properties and the electrocatalytic activity of the modified film electrodes, which show a promotive action for methanol oxidation and the methanol oxidation under a diffusion-controlled process.  相似文献   

18.
Carbon nanotubes (CNTs) were non-covalently functionalized by 1-pyrenecarboxaldehyde (PCA) via π-π stacking interactions. PCA not only acts as the reductant for the deposition of PtRu nanoparticles, but the oxidation product of PCA can also effectively anchor and stabilize the in-situ-produced PtRu?NPs on the surface of CNTs. Transmission electron microscopy demonstrates that PtRu?NPs are uniformly dispersed on the surface of CNTs with small particles sizes of about 1.7 nm. The obtained PtRu-NP/CNT composites have higher electrochemical surface areas, electrocatalytic activities, and better stability towards methanol oxidation compared to PtRu?NPs supported on pristine CNTs.  相似文献   

19.
Conducting polymer composite films comprised of polypyrrole (PPy) and multiwalled carbon nanotubes (MWCNTs) [PPy–CNT] were synthesized by in situ polymerization of pyrrole on carbon nanotubes in 0.1 M HCl containing (NH4)S2O8 as oxidizing agent over a temperature range of 0–5 °C. Pt nanoparticles are deposited on PPy–CNT composite films by chemical reduction of H2PtCl6 using HCHO as reducing agent at pH = 11 [Pt/PPy–CNT]. The presence of MWCNTs leads to higher activity, which might be due to the increase of electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces allowing higher dispersion and utilization of the deposited Pt nanoparticles. A comparative investigation was carried out using Pt–Ru nanoparticles decorated PPy–CNT composites. Cyclic voltammetry demonstrated that the synthesized Pt–Ru/PPy–CNT catalysts exhibited higher catalytic activity for methanol oxidation than Pt/PPy–CNT catalyst. Such kinds of Pt and Pt–Ru particles deposited on PPy–CNT composite polymer films exhibit excellent catalytic activity and stability towards methanol oxidation, which indicates that the composite films is more promising support material for fuel cell applications.  相似文献   

20.
The electrocatalytic activities of freshly prepared nanomaterials do not represent normal activities, if they change with aging. We report the dependence of the electrocatalytic activity of gold nanoparticles (AuNPs) upon aging. The activities of AuNPs prepared by four different methods (electrodeposition; reduction of Au ions with NaBH4, citrate, and ascorbate, respectively) slowly decrease with aging in the electrooxidation of H2O2 or formic acid, both in air and in solution. The possible origin of this effect is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号