首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Wang QM  Mak TC 《Inorganic chemistry》2003,42(5):1637-1643
The first successful attempt to construct supramolecular entities via incorporation of bifunctional exodentate ligands into the silver acetylide system is reported. Coordination assembly with nitrogen-donor spacers led to the formation of five distinct supramolecular complexes, namely [(Ag(2)C(2))(AgCF(3)CO(2))(4)(pyz)(2)](n) (1), [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(CF(3)CO(2))(4)(DabcoH)(4)(H(2)O)(1.5)].H(2)O (2), [(Ag(2)C(2))(AgCF(3)CO(2))(4)(CF(3)CO(2))(bpaH)](n)() (3), [(Ag(2)C(2))(AgCF(3)CO(2))(8)(bpa)(4)](n) (4), and [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(bppz)(2)(H(2)O)](n) (5) (pyz = pyrazine; Dabco = 1,4-diazabicyclo[2.2.2]octane; bpa = 1,2-bis(4-pyridyl)ethane; bppz = 2,3-bis(2-pyridyl)pyrazine). Complex 1 is a three-dimensional framework composed of silver columns cross-linked by pyrazine bridges, whereas 2 contains a discrete supermolecule whose core is a Ag(14) double cage that is completely surrounded by trifluoroacetate, aqua, and terminal monoprotonated Dabco ligands. Complex 3 has a branched-tree architecture with one terminal of the bpa ligand attached to the silver backbone and the other exposed and protonated. In 4, neutral decanuclear [(Ag(2)C(2))(AgCF(3)CO(2))(8)] units are interlinked by bpa spacers adopting both gauche and anti conformations to generate a layer structure. Another two-dimensional network was formed with bppz serving as an angular bridging ligand in 5, in which the building unit is a silver quadruple cage containing 24 silver atoms.  相似文献   

2.
Ten polymeric silver(I) double salts containing embedded acetylenediide: [(Ag2C2)2(AgCF3CO2)9(L1)3] (1), [(Ag2C2)2(AgCF3CO2)10(L2)3]H2O (2), [(Ag2C2)(AgCF3CO2)4(L3)(H2O)]0.75 H2O (3), [(Ag2C2)(1.5)(AgCF3CO2)7(L4)2] (4), [(Ag2C2)(AgCF3CO2)7(L5)2(H2O)] (5), [(Ag2C2) (AgC2F5CO2)7(L1)3(H2O)] (6), [(Ag2C2)(AgCF3CO2)7(L1)3(H2O)]2 H2O (7), [(Ag2C2)(AgC2F5CO2)6(L3)2] (8), [(Ag2C2)2(AgC2F5CO2)12(L4)2(H2O)4]H2O (9), and [(Ag2C2)(AgCF3CO2)6(L3)2(H2O)]H2O (10) have been isolated by varying the types of betaines, the perfluorocarboxylate ligands employed, and the reaction conditions. Single-crystal X-ray analysis has shown that 1-4 all have a columnar structure composed of fused silver(I) double cages, with C2(2-) species embedded in its stem and an exterior coat comprising anionic and zwitterionic carboxylates. For 5 and 6, single silver(I) cages are linked into a beaded chain through both types of carboxylate ligands. In 7, two different coordination modes of L1 connect the silver(I) polyhedra into a chain. For 8, the mu(2)-O,O' coordination mode of L3 connects the silver(I) double cages into a chain. Compound 9 exhibits a two-dimensional architecture generated from the cross-linkage of double cages by C2F5CO2-, L4, and [Ag2(C2F5CO2)2] units. Similar to 9, 10 is also a two-dimensional structure, which is formed by connecting the chains of linked double cages through [Ag2(CF3CO2)2] bridging.  相似文献   

3.
Five silver(I) double salts containing embedded acetylenediide, [Ag([12]crown-4)(2)][Ag(10)(C(2))(CF(3)CO(2))(9)([12]crown-4)(2)(H(2)O)(3)] x H(2)O (2), [Ag(2)C(2) x 5 AgCF(3)CO(2) x (benzo[15]crown-5) x 2 H(2)O] x 0.5 H(2)O (3), [Ag(4)([18]crown-6)(4)(H(2)O)(3)][Ag(18)(C(2))(3)(CF(3)CO(2))(16)(H(2)O)(2.5)] x 2.5 H(2)O (4), [Ag(2)C(2) x 6 AgC(2)F(5)CO(2) x 2([15]crown-5)](2) (5), and [(Ag(2)C(2))(2) x (AgC(2)F(5)CO(2))(9) x ([18]crown-6)(2) x (H(2)O)(3.5)] x H(2)O (6), have been isolated by varying the types of crown ethers and anions employed. Single-crystal X-ray analysis has shown that complex 2 is composed of winding anionic chains with sandwiched [Ag([12]crown-4)(2)](+) ions accommodated in the concave cavities between them. In 3, silver(I) double cages each sandwiched by a couple of benzo[15]crown-5 ligands are linked by [Ag(2)(CF(3)CO(2))(2)] bridges to form a one-dimensional structure. For 4, an anionic silver column is generated through fusion of two kinds of silver polyhedra (triangulated dodecahedron and bicapped trigonal antiprism), and the charge balance is provided by aqua-ligated [Ag([18]crown-6)](+) ions. Complex 5 is a centrosymmetric hexadecanuclear supermolecule composed of two [(eta(5)-[15]crown-5)(2)(C(2)@Ag(7))(mu-C(2)F(5)CO(2))(5)] moieties connected through a [Ag(2)(C(2)F(5)CO(2))(2)] bridge. Compound 6 is a discrete supermolecule containing an asymmetric (C(2))(2)@Ag(13) cluster core capped by two [18]crown-6 ligands in mu(3)-eta(5) and mu(4)-eta(6) ligation modes.  相似文献   

4.
Supramolecular networks constructed with the tBu--C[triple bond]C superset Ag(n) (n=4 or 5) metal-ligand synthon and trifluoroacetate have been transformed through the introduction of ancillary terminal nitrile ligands, from acetonitrile through propionitrile to tert-butyronitrile, giving rise to a 2D coordination network in AgC[triple chemical bond]CtBu3 AgCF(3)CO(2)H(2)O (1), a 2D hydrogen-bonded network in AgC[triple chemical bond]CtBu5 AgCF(3)CO(2)4 CH(3)CNH(2)O (2), a 2D hybrid coordination/hydrogen-bonded network in AgC[triple chemical bond]CtBu3 AgCF(3)CO(2)CH(3)CH(2)CN2 H(2)O (3), and another 2D coordination network in AgC[triple chemical bond]CtBu4 AgCF(3)CO(2) (CH(3))(3)CCN2 H(2)O (4). Concomitantly, the linkage modes between adjacent ethynide-bound Ag(n) aggregates in these compounds are also changed. A layer-type hydrogen-bonded host lattice in isostructural AgC[triple chemical bond]CtBu4 AgCF(3)CO(2)(R(4)N)(CF(3)CO(2)) 2 H(2)O (R(4)=BnMe(3), 5; R(4)=Et(4), 6; R(4)=nPr(4), 7) is obtained by introducing quaternary ammonium cations as guest templates, which occupy the interstices and thereby mediate the interlayer separation. Use of the bulky nBu(4)N(+) cation leads to disruption of the host network in AgC[triple bond]CtBu4 AgCF(3)CO(2)3[(nBu(4)N)(CF(3)CO(2))]H(2)O (8) with generation of a discrete dense nido-Ag(5) cluster.  相似文献   

5.
Reaction of [2.2]paracyclophane (pcp) with silver(I) trifluoroacetate (AgCF(3)CO(2)) and silver(I) pentafluoroproprionate (AgC(2)F(5)CO(2)) has led to isolation of three novel intercalation polymers: [Ag(4)(pcp)(CF(3)CO(2))(4)](C(6)H(6)) (1), [Ag(4)(pcp)(CF(3)CO(2))(4)](C(6)H(3)Me(3)) (2), and [Ag(4)(pcp)(C(2)F(5)CO(2))(4)](pcp) (3). Structure studies using single crystal X-ray diffraction have shown that all compounds contain two-dimensional layered frameworks based on cation-pi interactions, in which pcp exhibits an unprecedented micro-tetra-eta(2) coordination mode. Guest molecules which weakly interact with the host pcp via C-H.pi interactions are intercalated between layers. The guest-eliminated complexes (1a and 2a) and guest-reincorporated ones (1b or 1c and 2b or 2c), accompanied by small structural changes, were confirmed by (1)H NMR, thermogravimetric analysis, mass spectra, and X-ray powder diffraction patterns. The structural changes from 1 --> 1a --> 1c (=1) can take place reversibly in the process of exposure of 1a to benzene vapor. The original framework of complex 2 is also completely recovered by immersing 2a in mesitylene as well as exposing it to mesitylene vapor.  相似文献   

6.
Zhao XL  Wang QM  Mak TC 《Inorganic chemistry》2003,42(24):7872-7876
Four new silver(I) double salts (L(2)H)(4)[Ag(10)(C(2))(CF(3)CO(2))(12)(L)(2)].5H(2)O (1), [Ag(8)(C(2))(CF(3)CO(2))(6)(L)(6)] (2), [(Ag(2)C(2))(AgC(2)F(5)CO(2))(6)(L)(3)(H(2)O)].H(2)O (3), and (L.H(3)O)(2)[Ag(11)(C(2))(2)(C(2)F(5)CO(2))(9)(H(2)O)(2)].H(2)O (4) incorporating the hitherto unexplored ligand 4-hydroxyquinoline (L) have been synthesized by the hydrothermal method. Compound 1 features an unprecedented bicapped square-antiprismatic Ag(10) silver cage with an embedded C(2)(2-) moiety, whereas the discrete supermolecule 2 bears a rhombohedral Ag(8) core similar to that previously found in Ag(2)C(2).6AgNO(3). Compound 3 contains a discrete supramolecular complex whose core is a (C(2))(2)@Ag(16) double cage constructed from the edge-sharing of two monocapped square antiprisms, which is completely surrounded by 12 pentafluoropropionate, 6 4-hydroxyquinoline, and 2 aqua ligands. The layer structure in 4 is constructed from a sinuous anionic silver column composed of fused irregular monocapped trigonal antiprisms each encapsulating a C(2)(2-) dianion, with L.H(3)O(+) species serving as hydrogen-bond connectors to adjacent columns.  相似文献   

7.
Five novel silver(I) coordination polymers with cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3- thienyl)ethene (cis-dbe) were synthesized and are characterized in this paper. Treatment of AgCF(3)SO(3) or AgCF(3)CO(2) with cis-dbe afforded [Ag(2)(cis-dbe)(CF(3)SO(3))(2)] (1) and [Ag(2)(cis-dbe)(CF(3)CO(2))(2)] (2), and both complexes exhibit a 1-D infinite chain structure with two cyano groups and two thienyl groups of the ligand bridging four metal ions. Reaction of AgC(n)()F(2)(n)(+1)CO(2) with cis-dbe gave rise to an unprecedented cocrystallization of a 2-D sheet structure, [Ag(2)(cis-dbe)(C(n)F(2)(n)(+1)CO(2))(2)], where n = 2 (3), 3 (4), and 4 (5). Upon irradiation with 450 nm light, these five silver(I) complexes turned orange or red from yellow, and the color reverted to yellow on exposure to 560 nm light, indicative of the reversible cyclization/ring-opening reaction occurring in the crystalline phase. Furthermore, different anions gave not only the different structural dimensions but also the different photoresponsive patterns. The correlation between the crystal structures and the photochromic reactivity is discussed.  相似文献   

8.
Polymeric transition metal chalcogenides have attracted much attention because of their possible unusual properties directly derived from their extended structures. The molecules n-cyanopyridine (n = 2, 3, and 4) and pyridine-3,4-dicarbonitrile are found to function as bidentate or monodentate (only pyridine nitrogen donor atom) ligands in the coordination of silver(I) and copper(I) ions, respectively. The mode of coordination depends on the anion and the crystallization conditions and has been elucidated in all cases by single-crystal X-ray crystallography. We report here the syntheses, structural characterization, and electrical properties of six new polymers, [Ag(2)(2-cyanopyridine)(2)(NO(3))(2)](n)(1), [Ag(4)(3-cyanopyridine)(8)(SiF(6))(2)(H(2)O)(2)](n) (2), [Ag(3-cyanopyridine)(2)(NO(3))](n)(3), [Ag(pyridine-3,4-dicarbonitrile)(2)(NO(3))](n)(4), [Cu(I)(4-cyanopyridine)(2)(SCN)](n)(5), and [Cu(I)(pyridine-3,4-dicarbonitrile)(2)(SCN)](n)(6). Compounds 1 and 2 exhibit novel two-dimensional networks, while 3-6 have one-dimensional chain structures, in which 3 is a single-stranded helix. Room-temperature conductivities of 1, 2, 4, and 6 have been measured and are 3.1 x 10(-)(7), 2.7 x 10(-)(7), 7.4 x 10(-)(6), and 4.3 x 10(-)(5) S.cm(-)(1), respectively. The effect of temperature on the conductivities has been investigated.  相似文献   

9.
Three novel silver(I) complexes with benzopyrene derivatives were synthesized and characterized in this paper. Treatment of AgClO(4)*H(2)O with 7-methylbenzo[a]pyrene (L(1)) afforded [Ag(2)(L(1))(toluene)(0.5)(ClO(4))(2)](n)() (1) which exhibits a 2-D sheet structure with double-stranded helical motifs. Reaction of AgCF(3)SO(3) with dibenzo[b,def ]chrysene (L(2)) gave rise to an unprecedented cocrystallization structure, ([Ag(2)(L(2))(CF(3)SO(3))(2)][Ag(2)(toluene)(2)(CF(3)SO(3))(2)])(n)() (2), formed by a 2-D neutral lamellar polymer and a 1-D neutral rodlike one. The ligand benzo[e]pyrene (L(3)) coordinated to silver(I) ions generating a closed triple-decker tetranuclear complex [Ag(4)(L(3))(4)(p-xylene)(ClO(4))(4)] (3) which can be regarded as a stacking polymer owing to existing intermolecular pi-pi stack interactions. The structural diversity of the silver(I) coordination polymers with polycyclic aromatic hydrocarbons is not only related to the stacking patterns of free polycyclic aromatic hydrocarbons in the crystalline state, but also the geometric shapes of the molecules for these free ligands. In addition, the coordination of solvents to metal ions plays a crucial role in the formation of the unprecedented coordination polymeric architectures. The ESR spectroscopic results, conductivity, and synthesis properties are also discussed.  相似文献   

10.
Fang XQ  Deng ZP  Huo LH  Wan W  Zhu ZB  Zhao H  Gao S 《Inorganic chemistry》2011,50(24):12562-12574
Self-assembly of silver(I) salts and three ortho-hydroxyl and carboxyl groups decorated arenesulfonic acids affords the formation of nine silver(I)-sulfonates, (NH(4))·[Ag(HL1)(NH(3))(H(2)O)] (1), {(NH(4))·[Ag(3)(HL1)(2)(NH(3))(H(2)O)]}(n) (2), [Ag(2)(HL1)(H(2)O)(2)](n) (3), [Ag(2)(HL2)(NH(3))(2)]·H(2)O (4), [Ag(H(2)L2)(H(2)O)](n) (5), [Ag(2)(HL2)](n) (6), [Ag(3)(L3)(NH(3))(3)](n) (7), [Ag(2)(HL3)](n) (8), and [Ag(6)(L3)(2)(H(2)O)(3)](n) (9) (H(3)L1 = 2-hydroxyl-3-carboxyl-5-bromobenzenesulfonic acid, H(3)L2 = 2-hydroxyl-4-carboxylbenzenesulfonic acid, H(3)L3 = 2-hydroxyl-5-carboxylbenzenesulfonic acid), which are characterized by elemental analysis, IR, TGA, PL, and single-crystal X-ray diffraction. Complex 1 is 3-D supramolecular network extended by [Ag(HL1)(NH(3))(H(2)O)](-) anions and NH(4)(+) cations. Complex 2 exhibits 3-D host-guest framework which encapsulates ammonium cations as guests. Complex 3 presents 2-D layer structure constructed from 1-D tape of sulfonate-bridged Ag1 dimers linked by [(Ag2)(2)(COO)(2)] binuclear units. Complex 4 exhibits 3-D hydrogen-bonding host-guest network which encapsulates water molecules as guests. Complex 5 shows 3-D hybrid framework constructed from organic linker bridged 1-D Ag-O-S chains while complex 6 is 3-D pillared layered framework with the inorganic substructure constructing from the Ag2 polyhedral chains interlinked by Ag1 dimers and sulfonate tetrahedra. The hybrid 3-D framework of complex 7 is formed by L3(-) trianions bridging short trisilver(I) sticks and silver(I) chains. Complex 8 also presents 3-D pillared layered framework, and the inorganic layer substructure is formed by the sulfonate tetrahedrons bridging [(Ag1O(4))(2)(Ag2O(5))(2)](∞) motifs. Complex 9 represents the first silver-based metal-polyhedral framework containing four kinds of coordination spheres with low coordination numbers. The structural diversities and evolutions can be attributed to the synthetic methods, different ligands and coordination modes of the three functional groups, that is, sulfonate, hydroxyl and carboxyl groups. The luminescent properties of the nine complexes have also been investigated at room temperature, especially, complex 1 presents excellent blue luminescence and can sensitize Tb(III) ion to exhibit characteristic green emission.  相似文献   

11.
YP Xie  TC Mak 《Inorganic chemistry》2012,51(16):8640-8642
Variation of the reaction conditions with AgC≡CR (R = Ph, C(6)H(4)OCH(3)-4, (t)Bu), (t)BuPO(3)H(2), and AgX (X = NO(3), BF(4)) as starting materials afforded four new silver(I) ethynide complexes incorporating the tert-butylphosphonate ligand, namely, 3AgC≡CPh·Ag(2)(t)BuPO(3)·Ag(t)BuPO(3)H·2AgNO(3) (1), 2AgC≡CC(6)H(4)OCH(3)-4·Ag(2)(t)BuPO(3)·2AgNO(3) (2), [{Ag(5)(NO(3)@Ag(18))Ag(5)}((t)BuC≡C)(16)((t)BuPO(3))(4)(H(2)O)(3)][{Ag(5)(NO(3)@Ag(18))Ag(5)} ((t)BuC≡C)(16)((t)BuPO(3))(4)(H(2)O)(4)]·3SiF(6)·4.5H(2)O·3.5MeOH (3), and [{Ag(8)(Cl@Ag(14))}((t)BuC≡C)(14)((t)BuPO(3))(2)F(2)(H(2)O)(2)]BF(4)·3.5H(2)O (4). Single-crystal X-ray analysis revealed that complexes 1 and 2 display different layer-type coordination networks, while 3 and 4 contain high-nuclearity silver(I) composite clusters enclosing nitrate and chloride template ions, respectively, that are supported by (t)BuPO(3)(2-) ligands.  相似文献   

12.
Reactions of the pyridine N-oxide ligands L, L2 and L3 with the silver acetylenediide-containing system under hydrothermal conditions gave rise to four silver-acetylenediide complexes bearing interesting C2@Agn motifs: (Ag2C2)2(AgCF3CO2)8(L1)3.5 (1), (Ag2C2)2(AgCF3CO2)8(L2)2 (2), (Ag2C2)(AgCF3CO2)4(L3) (3) and [(Ag7(C2)(CF3SO3)3(L3)2(H2O)2] x 2CF3SO3 (4) (L = nicotinic acid N-oxide, L(1) = pyridine N-oxide, L2 = 1,2-bis(4-pyridyl)ethane N,N'-dioxide, L3 = 1,3-bis(4-pyridyl)propane N,N'-dioxide), which exhibit new distorted polyhedral C2@Agn cage motifs. Complex 1 has a pair of acetylenediide dianions encapsulated in a Ag(14) aggregate composed of three polyhedral parts, whereas 2 contains an irregular (C2)2@Ag13 double cage. In 3, the basic building unit is a centrosymmetric (C2)2@Ag12 double cage with each component single cage taking the shape of a highly distorted triangulated dodecahedron with one missing vertex. As to complex 4, the core is a C2@Ag7 single cage in the form of a slightly distorted monocapped trigonal prism with four cleaved edges that include all three vertical sides. Furthermore, in the silver-rich environment, the pyO-type ligands are induced to exhibit unprecedented coordination modes, such as the mu(5)-O,O,O,O',O' ligation mode of L2 in 2 and the mu4-O,O,O',O' mode of L3 in 3 and 4.  相似文献   

13.
A series of novel double salts of silver(I) were isolated by dissolving Ag(2)C(2) in a concentrated aqueous solution of R(F)CO(2)Ag (R(F) = CF(3), C(2)F(5)) and AgBF(4). Different ancillary solvento ligands such as H(2)O, CH(3)CN, and C(2)H(5)CN were found to affect the crystallization process that led to the assembly of various silver(I) cages with embedded C(2)(2-) ions. 2Ag(2)C(2) x 12CF(3)CO(2)Ag x 5H(2)O (1) consists of two independent C(2)@Ag(7) cages, each having the shape of a basket with a square base. Ag(2)C(2) x 6CF(3)CO(2)Ag x 3CH(3)CN (2) contains a zigzag chain of edge-sharing triangulated dodecahedra, and 4Ag(2)C(2) x 23CF(3)CO(2)Ag x 7C(2)H(5)CN x 2.5H(2)O (3) features an unusual double-walled silver column constructed from the fusion of four different kinds of irregular polyhedra. Ag(2)C(2) x 10C(2)F(5)CO(2)Ag x 9.5H(2)O (4), Ag(2)C(2) x 9C(2)F(5)CO(2)Ag x 3CH(3)CN x H(2)O (5), and Ag(2)C(2) x 6C(2)F(5)CO(2)Ag x 2C(2)H(5)CN (6) all contain an edge-sharing double cage with each single cage in the shape of a square antiprism, a capped square antiprism, and a triangulated dodecahedron, respectively.  相似文献   

14.
Complex [Ag(tpba)N(3)] (1) was obtained by reaction of novel tripodal ligand N,N',N"-tris(pyrid-3-ylmethyl)-1,3,5-benzenetricarboxamide (TPBA) with [Ag(NH(3))(2)]N(3). While the reactions between 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (TITMB) and silver(I) salts with different anions and solvent systems give six complexes: [Ag(3)(titmb)(2)](N(3))(3).CH(3)OH.4 H(2)O (2), [Ag(3)(titmb)(2)](CF(3)SO(3))(2)(OH).5 H(2)O (3), [Ag(3)(titmb)(2)][Ag(NO(3))(3)]NO(3).H(2)O (4), [Ag(3)(titmb)(2)(py)](NO(3))(3).H(2)O (py=pyridine) (5), [Ag(3)(titmb)(2)(py)](ClO(4))(3) (6), and [Ag(3)(titmb)(2)](ClO(4))(3).CHCl(3) (7). The structures of these complexes were determined by X-ray crystallography. The results of structural analysis of complexes 1 and 2, with the same azide anion but different ligands, revealed that 1 is a twofold interpenetrated 3D framework with interlocked cage-like moieties, while 2 is a M(3)L(2) type cage-like complex with a methanol molecule inside the cage. Entirely different structure and topology between 1 and 2 indicates that the nature of organic ligands affected the structures of assemblies greatly. While in the cases of complexes 2-7 with flexible tripodal ligand TITMB, they are all discrete M(3)L(2) type cages. The results indicate that the framework of these complexes is predominated by the nature of the organic ligand and geometric need of the metal ions, but not influenced greatly by the anions and solvents. It is interesting that there is a divalent anion [Ag(NO(3))(3)](2-) inside the cage 4 and an anion of ClO(4)(-) or NO(3)(-) spontaneously encapsulated within the cage of complexes 5, 6 and 7.  相似文献   

15.
The bitopic ligand p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2) (pz = pyrazolyl ring) that contains two tris(pyrazolyl)methane units connected by a semirigid organic spacer reacts with silver(I) salts to yield [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgX)(2)]( infinity ), where X = CF(3)SO(3)(-) (1), SbF(6)(-) (2), PF(6)(-) (3), BF(4)(-) (4), and NO(3)(-) (5). Crystallization of the first three compounds from acetone yields [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgCF(3)SO(3))(2)]( infinity ) (1a), [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgSbF(6))(2)[(CH(3))(2)CO](2)]( infinity ) (2b), and [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)AgPF(6)]( infinity ) (3a), where the stoichiometry for the latter compound has changed from a metal:ligand ratio of 2:1 to 1:1. The structure of 1a is based on helical argentachains constructed by a kappa(2)-kappa(1) coordination to silver of the tris(pyrazolyl)methane units. These chains are organized into a tubular 3D structure by cylindrical [(CF(3)SO(3))(6)](6)(-) clusters that form weak C-H...O hydrogen bonds with the bitopic ligand. The same kappa(2)-kappa(1) coordination is present in the structure of 2a, but the structure is organized by six different tris(pyrazolyl)methane units from six ligands bonding with six silvers to form a 36-member argentamacrocycle core. The cores are organized in a tubular array by the organic spacers where each pair of macrocycles sandwich six acetone molecules and one SbF(6)(-) counterion. The structure of 3a is based on a kappa(2)-kappa(0) coordination mode of each tris(pyrazolyl)methane unit forming a helical coordination polymer, with two strands organized in a double stranded helical structure by a series of C-H...pi interactions between the central arene rings. Crystallization of 2-4 from acetonitrile yields complexes of the formula [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)[(AgX)(2)(CH(3)CN)(n)]]( infinity ) where n = 2 for X = SbF(6)(-) (2b), X = PF(6)(-) (3b) and n = 1 for X = BF(4)(-) (4b). All three structures contain argentachains formed by a kappa(2)-kappa(1) coordination mode of the tris(pyrazolyl)methane units linked by the organic spacer and arranged in a 2D sheet structure with the anions sandwiched between the sheets. Crystallization of 5 from acetonitrile yields crystals of the formula [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgNO(3))(2)(CH(3)CN)(4)]( infinity ), where the nitrate is bonded to the silver. The argentachains, again formed by kappa(2)-kappa(1) coordination, are arranged in W-shaped sheets that have an overall configuration very different from 2b-4b. Treating [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgSbF(6))(2)]( infinity ) with a saturated aqueous solution of KPF(6) or KO(3)SCF(3) slowly leads to complete exchange of the anion. Crystallization of a sample that contains an approximately equal mixture of SbF(6)(-)/PF(6)(-) from acetonitrile yields [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)[Ag(2)(PF(6))(0.78(1))(SbF(6))(1.22(1))(CH(3)CN)(2)][(CH(3)CN)(0.25) (C(4)H(10)O)(0.25)]]( infinity ), a compound with a sheet structure analogous to 2b-4b. Crystallization of the same mixture from acetone yields [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgSbF(6))[(CH(3))(2)CO](1.5)]( infinity ), where the metal-to-ligand ratio is 1:1 and the [C(pz)(3)] units are kappa(2)-kappa(0) bonded forming a coordination polymer. The supramolecular structures of all species are organized by a combination of C-H...pi, pi-pi, or weak C-H-F(O) hydrogen bonding interactions.  相似文献   

16.
Zhao Y  Zhang P  Li B  Meng X  Zhang T 《Inorganic chemistry》2011,50(18):9097-9105
Three phenylethynes bearing methyl carboxylate (HL1), monocarboxylate (H(2)L2), and dicarboxylate (H(2)L3) groups were utilized as ligands to synthesize a new class of organometallic silver(I)-ethynide complexes as bifunctional building units to assemble silver(I)-organic networks. X-ray crystallographic studies revealed that in [Ag(2)(L1)(2)·AgNO(3)](∞) (1) (L1= 4-C(2)C(6)H(4)CO(2)CH(3)), one ethynide group interacts with three silver ions to form a complex unit. These units aggregate by sharing silver ions with the other three units to afford a silver column, which are further linked through argentophilic interaction to generate a two-demensional (2D) silver(I) network. In [Ag(2)(L2)·3AgNO(3)·H(2)O](∞) (2) (L2 = 4-CO(2)C(6)H(4)C(2)), the ethynide group coordinates to four silver ions to form a building unit (Ag(4)C(2)C(6)H(4)CO(2)), which interacts through silver(I)-carboxylate coordination bonds to generate a wave-like 2D network and is subsequently connected by nitrate anions as bridging ligands to afford a three-demensional (3D) network. In [Ag(3)(L3)·AgNO(3)](∞) (3) (L3 = 3,5-(CO(2))(2)C(6)H(3)C(2)), the building unit (Ag(4)C(2)C(6)H(3)(CO(2))(2)) aggregates to form a dimer [Ag(8)(L3)(2)] through argentophilic interaction. The dimeric units interact through silver(I)-carboxylate coordination bonds to directly generate a 3D network. The obtained results showed that as a building unit, silver(I)-ethynide complexes bearing carboxylate groups exhibit diverse binding modes, and an increase in the number of carboxylate groups in the silver(I)-ethynide complex unit leads to higher level architectures. In the solid state, all of the complexes (1, 2, and 3) are photoluminescent at room temperature.  相似文献   

17.
High purity samples of a [Ag(pyrazine)(2)]S(2)O(8) complex were obtained using modified synthetic pathways. Di(pyrazine)silver(II) peroxydisulfate is sensitive to moisture forming [Ag(pyrazine)(2)](S(2)O(8))(H(2)O) hydrate which degrades over time yielding HSO(4)(-) derivatives and releasing oxygen. One polymorphic form of pyrazinium hydrogensulfate, β-(pyrazineH(+))(HSO(4)(-)), is found among the products of chemical decomposition together with unique [Ag(i)(pyrazine)](5)(H(2)O)(2)(HSO(4))(2)[H(SO(4))(2)]. Chemical degradation of [Ag(pyrazine)(2)]S(2)O(8) in the presence of trace amounts of moisture can explain the very low yield of wet synthesis (11-15%). Attempts have failed to obtain a mixed valence Ag(II)/Ag(I) pyrazine complex via partial chemical reduction of the [Ag(pyrazine)(2)]S(2)O(8) precursor with a variety of inorganic and organic reducing agents, or via controlled thermal decomposition. Thermal degradation of [Ag(pyrazine)(2)]S(2)O(8) containing occluded water proceeds at T > 90 °C via evolution of O(2); simultaneous release of pyrazine and SO(3) is observed during the next stages of thermal decomposition (120-285 °C), while Ag(2)SO(4) and Ag are obtained upon heating to 400-450 °C.  相似文献   

18.
The coordination chemistry of silver(I) with the nitrogen-bridged ligands (C(6)H(5))(2)PN(R)P(C(6)H(5))(2) [R = H (dppa); R = CH(3) (dppma)] has been investigated by (31)P NMR and electrospray mass spectrometry (ESMS). Species observed by (31)P NMR include Ag(2)(mu-dppa)(2+), Ag(2)(mu-dppa)(2)(2+), Ag(2)(mu-dppa)(3)(2+), Ag(2)(mu-dppma)(2+), Ag(2)(mu-dppma)(2)(2+), and Ag(eta(2)-dppma)(2)(+). Species observed by ESMS at low cone voltages were Ag(2)(dppa)(2)(2+), Ag(2)(dppa)(3)(2+), Ag(2)(dppma)(2)(2+), and Ag(dppma)(2)(+). (C(6)H(5))(2)PN(CH(3))P(C(6)H(5))(2) showed a strong tendency to chelate, while (C(6)H(5))(2)PN(H)P(C(6)H(5))(2) preferred to bridge. Differences in the bridging versus chelating behavior of the ligands are assigned to the Thorpe-Ingold effect, where the methyl group on nitrogen sterically interacts with the phenyl groups on phosphorus. The crystal structure of the three-coordinate dinuclear silver(I) complex (Ag(2)[(C(6)H(5))(2)PN(H)P(C(6)H(5))(2)](3))(BF(4))(2) has been determined. Bond distances include Ag-Ag = 2.812(1) A, Ag(1)-P(av) = 2.492(3) A, and Ag(2)-P(av) = 2.509(3) A. The compound crystallizes in the monoclinic space group Cc at 294 K, with a = 18.102(4)(o), Z = 4, V = 7261(3) A(3), R = 0.0503, and R(W) = 0.0670.  相似文献   

19.
The reaction of pyridylbis(3-hexamethyleneiminyl thiosemicarbazone) (H(2)Plhexim) with various silver(I) salts and metal-ligand ratios led to the isolation of different complexes of the formulae [Ag(NO(3))(H(2)Plhexim)]·H(2)O (1), [Ag(2)(NO(3))(H(2)Plhexim)(CH(3)OH)](NO(3)) (2), [Ag(2)(ClO(4))(2)(H(2)Plhexim)] (3), [Ag(HPlhexim)]·xH(2)O (4), [Ag(HPlhexim)] (4a), [Ag(2)(Plhexim)(PPh(3))(4)]·2MeOH (5) and [Ag(4)(Plhexim)(2)]·DMF (6). The complexes were fully characterized by elemental analysis, ESI mass spectrometry, IR and NMR ((1)H, (31)P) spectroscopy. The structures of 4a, 5 and 6 were also identified by single crystal X-ray structure determination. The concentration dependence on the absorption spectra of the methanolic solutions indicates polymerization equilibria in the ground state in both the ligand and the complexes. While H(2)Plhexim is essentially non-fluorescent, complexes 1-5 fluoresce more strongly by comparison. This fluorescent behavior is consistent with the monomeric or dimeric nature of the complexes.  相似文献   

20.
Syntheses of a number of adducts of silver(I) (bi-)carbonate with triphenylphosphine, both mechanochemically, and from solution, are described, together with their infra-red spectra, (31)P CP MAS NMR and crystal structures. Ag(HCO(3)):PPh(3) (1:4) has been isolated in the ionic form [Ag(PPh(3))(4)](HCO(3))·2EtOH·3H(2)O. Ag(2)CO(3):PPh(3) (1:4) forms a binuclear neutral molecule [(Ph(3)P)(2)Ag(O,μ-O'·CO)Ag(PPh(3))(2)](·2H(2)O), while Ag(HCO(3)):PPh(3) (1:2) has been isolated in both mononuclear and binuclear forms: [(Ph(3)P)(2)Ag(O(2)COH)] and [(Ph(3)P)(2)Ag(μ-O·CO·OH)(2)Ag(PPh(3))(2)] (both unsolvated). A more convenient method for the preparation of the previously reported copper(I) complex [(Ph(3)P)(2)Cu(HCO(3))] is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号