首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A series of novel polystyrene-oligo(oxyethylene) graft copolymers containing monodisperse PEG units (n = 2-12) have been synthesized and examined concerning their applicability for gel-phase 13C NMR spectroscopy. A strong correlation between the graft length and the line widths in the gel-phase spectra was observed. By grafting a PEG chain with only eight units, it was possible to obtain results similar to TentaGel resin. Additionally, TOF-SIMS images were recorded in order to evaluate the homogeneity of the resin.  相似文献   

2.
We describe the formation and characterization of surface-passivating poly(ethylene glycol) (PEG) films on indium tin oxide (ITO) glass substrates. PEG chains with a molecular weight of 2000 and 5000 D were covalently attached to the substrates in a systematic approach using different coupling schemes. The coupling strategies included the direct grafting with PEG-silane, PEG-methacrylate, and PEG-bis(amine), as well as the two-step functionalization with aldehyde-bearing silane films and subsequent coupling with PEG-bis(amine). Elemental analysis by X-ray photoelectron spectroscopy (XPS) confirmed the successful surface modification, and XPS and ellipsometry provided values for film thicknesses. XPS and ellipsometry thickness values were almost identical for PEG-silane films but differed by up to 400% for the other PEG layers, suggesting a homogeneous layer for PEG-silane but an inhomogeneous distribution for other PEG coatings on the molecularly rough ITO substrates. Atomic force microscopy (AFM) and water contact angle goniometry confirmed the different degrees of surface homogeneity of the polymer films, with PEG-silane reducing the AFM rms surface roughness by 50% and the water contact angle hysteresis by 75% compared to uncoated ITO. The ability of the PEG layers to passivate the substrate against the nonspecific adsorption of biopolymers was tested using fluorescence-labeled immunoglobulin G and DNA oligonucleotides in combination with fluorescence microscopy. The results indicate a positive relationship between film density and homogeneity on one hand and the ability to passivate against biopolymer adhesion on the other hand. The most homogeneous layers prepared with PEG-silane reduced the nonspecific adsorption of fluorescence-labeled DNA by a factor of 300 compared to uncoated ITO. In addition, the study finds that the ratio of film thicknesses derived by ellipsometry and XPS is a useful parameter to quantify the structural integrity of PEG layers on molecularly rough ITO surfaces. The findings may be applied to characterize PEG or other polymeric films on similarly coarse substrates.  相似文献   

3.
吴奇 《高分子科学》2014,(11):1575-1580
The captioned question has been addressed by the steric effect; namely, the adsorption of proteins on a surface grafted with linear polymer chains decreases monotonically as the grafting density increases. However, there is no quantitative and satisfactory explanation why the adsorption starts to increase when the grafting density is sufficiently high and why polyethylene glycol(PEG) still remains as one of the best polymers to repel proteins. After considering each grafted chain as a molecular spring confined inside a "tube" made of its surrounding grafted chains, we estimated how its free energy depends on the grafting density and chain length, and calculated its thermal energy-agitated chain conformation fluctuation, enabling us to predict an adsorption minimum at a proper grafting density, which agrees well with previous experimental results. We propose that it is such a chain fluctuation that slows down the adsorption kinetically.  相似文献   

4.
In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles with an equal number of short and long grafts at low to medium grafting density, the short grafts are in a more coiled up conformation (lower radius of gyration) than their monodisperse counterparts to provide a larger free volume to the longer grafts so they can gain conformational entropy. The longer grafts do not show much difference in conformation from their monodisperse counterparts at low grafting density, but at medium grafting density the longer grafts exhibit less stretched conformations (lower radius of gyration) as compared to their monodisperse counterparts. In the presence of an explicit homopolymer matrix, the longer grafts are more compressed by the matrix homopolymer chains than the short grafts. We observe that the potential of mean force between bidisperse grafted particles has features of the PMF of monodisperse grafted particles with short grafts and monodisperse grafted particles with long grafts. The value of the PMF at contact is governed by the short grafts and values at large inter-particle distances are governed by the longer grafts. Further comparison of the PMF for bidisperse and monodisperse polymer grafted particles in a homopolymer matrix at varying parameters shows that the effects of matrix chain length, matrix packing fraction, grafting density, and particle curvature on the PMF between bidisperse polymer grafted particles are similar to those seen between monodisperse polymer grafted particles.  相似文献   

5.
Poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) are extensively used to modify substrates to prevent nonspecific protein adsorption and to increase hydrophilicity. X-ray photoelectron spectroscopy analysis, complemented by water contact angle measurements, is employed to investigate the formation and stability upon aging and heating of PEG monolayers formed on gold and silicon nitride substrates. In particular, thiolated PEG monolayers on gold, with and without the addition of an undecylic spacer chain, and PEG monolayers formed with oxysilane precursors on silicon nitride have been probed. It is found that PEG-thiol SAMs are degraded after less than two weeks of exposure to air and when heated at temperatures as low as 120 degrees C. On the contrary, PEG-silane SAMs are stable for more than two weeks, and fewer molecules are desorbed even after two months of aging, compared to those desorbed in two weeks from the PEG-thiol SAMs. A strongly bound hydration layer is found on PEG-silane SAMs aged for two months. Heating PEG-silane SAMs to temperatures as high as 160 degrees C improves the quality of the monolayer, desorbing weakly bound contaminants. The differences in stability between PEG-thiol SAMs and PEG-silane SAMs are ascribed to the different types of bonding to the surface and to the fact that the thiol-Au bond can be easily oxidized, thus causing desorption of PEG molecules from the surface.  相似文献   

6.
We prepared surface-grafted polystyrene (PS) beads with comb-like poly(ethylene glycol) (PEG) chains. To accomplish this, conventional gel-type PS beads (35-75 microm) were treated with ozone gas to introduce hydroperoxide groups onto the surface. Using these hydroperoxide groups, poly(methyl methacrylate) (PMMA, Mn= 22,000-25,000) was grafted onto the surface of the PS beads. The ester groups of the grafted PMMA were reduced to hydroxyl groups with lithium aluminum hydride (LAH). After adding ethylene oxide (EO) to the hydroxyl groups, we obtained the PS-sg-PEG beads, which had a rugged surface and a diameter of 80-150 microm. We could obtain several kinds of the PS-sg-PEG beads by controlling the chain lengths of the grafted PMMA and the molecular weights of the PEG chains. The grafted PEG layer was about 30-50 microm thick, which was verified from the cross-sectioned views of the fluorescamine-labeled beads. These fluorescence images proved that the beads possessed a pellicular structure. Furthermore, we found that the surface-grafted PEG chains had the characteristic property of reducing non-specific protein adsorption on the beads.  相似文献   

7.
The processes of adsorption of grafted copolymers onto negatively charged surfaces were studied using a dissipative quartz crystal microbalance (D-QCM) and ellipsometry. The control parameters in the study of the adsorption are the existence or absence on the molecular architecture of grafted polyethyleneglycol (PEG) chains with different lengths and the chemical nature of the main chain, poly(allylamine) (PAH) or poly(L-lysine) (PLL). It was found out that the adsorption kinetics of the polymers showed a complex behavior. The total adsorbed amount depends on the architecture of the polymer chains (length of the PEG chains), on the polymer concentration and on the chemical nature of the main chain. The comparison of the thicknesses of the adsorbed layers obtained from D-QCM and from ellipsometry allowed calculation of the water content of the layers that is intimately related to the grafting length. The analysis of D-QCM results also provides information about the shear modulus of the layers, whose values have been found to be typical of a rubber-like polymer system. It is shown that the adsorption of polymers with a charged backbone is not driven exclusively by the electrostatic interactions, but the entropic contributions as a result of the trapping of water in the layer structure are of fundamental importance.  相似文献   

8.
Adsorbed layers of "comb-type" copolymers consisting of PEG chains grafted onto a poly(l-lysine) (PLL) backbone on niobium oxide substrates were studied by colloid-probe AFM in order to characterize the interfacial forces associated with coatings of varying architectures (PEG/PLL ratios and PEG chain lengths) and their relevance to protein resistance. The steric and electrostatic forces measured varied substantially with the architecture of the PLL-g-PEG copolymers. Varying the ionic strength of the buffer solutions enabled discrimination between electrostatic and steric-entropic contributions to the net interfacial force. For high PEG grafting densities the steric component was most prominent, but at low ionic strengths and high grafting densities, a repulsive electrostatic surface force was also observed; its origin was assigned to the niobia charges beneath the copolymer, as insufficient protonated amine groups in the PLL backbone were available for compensation of the oxide surface charges. For lower grafting densities and lower ionic strengths there was a substantial attractive electrostatic contribution arising from interaction of the electrical double layer arising from the protonated amine groups, with that of the silica probe surface (as under low ionic strength conditions, the electrical double layer was thicker than the PEG layer). For these PLL-g-PEG coatings the net interfacial force can thus be a markedly varying superposition of electrostatic and steric-entropic contributions, depending on various factors. The force curves correlate with protein adsorption data, demonstrating the utility of AFM colloid-probe force measurements for quantitative analysis of surface forces and how they determine interfacial interactions with proteins. Such characterization of the net interfacial forces is essential to elucidate the multiple types of interfacial forces relevant to the interactions between PLL-g-PEG coatings and proteins and to advance interpretation of protein adsorption or repellence beyond the oversimplified steric barrier model; in particular, our data demonstrate the importance of an ionic-strength-dependent minimum PEG layer thickness to screen the electrostatic interactions of charged interfaces.  相似文献   

9.
Biofouling of all structures immersed in seawater constitutes an important problem, and many strategies are currently being developed to tackle it. In this context, our previous work shows that poly(ethylene glycol) monoacrylate (PEGA) macromonomer grafted on preoxidized poly(methyl methacrylate) (PMMAox) films exhibits an excellent repellency against the bovine serum albumin used as a model protein. This study aims to evaluate the following: (1) the prevention of a marine extract material adsorption by the modified surfaces and (2) the antifouling property of the PEGA-g-PMMAox substrates when immersed in natural seawater during two seasons (season 1: end of April-beginning of May 2007, and season 2: end of October-beginning of November 2007). The antifouling performances of the PEGA-g-PMMAox films are investigated for different PEG chain lengths and macromonomer concentrations into the PEGA-based coatings. These two parameters are followed as a function of the immersion time, which evolves up to 14 days. The influence of the PEGA layer on marine compounds (proteins and phospholipids) adsorption is evidenced by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). It was found that the antifouling efficiency of the PEGA-grafted surfaces increases with both PEGA concentration and PEG chain length.  相似文献   

10.
An ion‐exchanger with polyanionic molecular brushes was synthesized by a “grafting from” route based on “surface‐controlled reversible addition‐fragmentation chain transfer polymerization” (RAFT). The RAFT agent, PhC(S)SMgBr was covalently attached to monodisperse‐porous poly(dihydroxypropyl methacrylate‐co‐ethylene dimethacrylate), poly(DHPM‐co‐EDM) particles 5.8 μm in size. The monomer, 3‐sulfopropyl methacrylate (SPM), was grafted from the surface of poly(DHPM‐co‐EDM) particles with an immobilized chain transfer agent by the proposed RAFT protocol. The degree of polymerization of SPM (i. e. the molecular length of the polyanionic ligand) on the particles was controlled by varying the molar ratio of monomer/RAFT agent. The particles carrying polyanionic molecular brushes with different lengths were tested as packing material in the separation of proteins by ion exchange chromatography. The columns packed with the particles carrying relatively longer polyanionic ligands exhibited higher separation efficiency in the separation of four proteins. Plate heights between 130–200 μm were obtained. The ion‐exchanger having poly‐(SPM) ligand with lower degree of polymerization provided better peak‐resolutions on applying a salt gradient with higher slope. The molecular length and the ion‐exchanger group content of polyionic ligand were adjusted by controlling the degree of polymerization and the grafting density, respectively. This property allowed control of the separation performance of the ion‐exchanger packing.  相似文献   

11.
Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) copolymers with various grafting ratios were adsorbed to niobium pentoxide-coated silicon wafers and characterized before and after protein adsorption using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Three proteins of different sizes, myoglobin (16 kD), albumin (67 kD), and fibrinogen (340 kD), were studied. XPS was used to quantify the amount of protein adsorbed to the bare and PEGylated surfaces. ToF-SIMS and principal component analysis (PCA) were used to study protein conformational changes on these surfaces. The smallest protein, myoglobin, generally adsorbed in higher numbers than the much larger fibrinogen. Protein adsorption was lowest on the surfaces with the highest PEG chain surface density and increased as the PEG layer density decreased. The highest adsorption was found on lysine-coated and bare niobium surfaces. ToF-SIMS and PCA data evaluation provided further information on the degree of protein denaturation, which, for a particular protein, were found to decrease with increasing PEG surface density and increase with decreasing protein size.  相似文献   

12.
In this paper, polyethylene glycol (PEG) molecules have been grafted onto the surface of nanometer silica in toluene by using 1,4‐phenylene diisocyanate (PPDI) as a coupling agent, and dibutyltion dilaurate (DBTDL) as a catalyst. This process was executed by using a one‐step procedure involving a first reaction of PPDI with silica and a subsequent reaction of isocyanate‐bound silica with PEG. The PEG‐grafted silica has been characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and SEM analyses. The effects of reaction time, temperature and molar ratio of reactant on the effectiveness of the surface grafting were also investigated. Optimum grafting conditions of PEG were obtained at the temperature of 80 °C for 8 h. Maximum grafting of PEG molecules ratio was 22.6%, and maximum overall grafting ratio was 35%, as determined by TGA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Hyperbranching poly(allylamine) (PAAm) and poly(ethylene glycol) (PEG) on silicon and its effect on protein adhesion was investigated. Hyperbranching involves sequential grafting of polymers on a surface with one of the components having multiple reactive sites. In this research, PAAm provided multiple amines for grafting PEG diacrylate. Current methodologies for generating PEG surfaces include PEG-silane monolayers or polymerized PEG networks. Hyperbranching combines the nanoscale thickness of monolayers with the surface coverage afforded by polymerization. A multistep approach was used to generate the silicon-supported hyperbranched polymers. The silicon wafer surface was initially modified with a vinyl silane followed by oxidation of the terminal vinyl group to present an acid function. Carbodiimide activation of the surface carboxyl group allowed for coupling to PAAm amines to form the first polymer layer. The polymers were hyperbranched by grafting alternating PEG and PAAm layers to the surface using Michael addition chemistry. The alternating polymers were grafted up to six total layers. The substrates remained hydrophilic after each modification. Static contact angles for PAAm (32-44 degrees) and PEG (33-37 degrees) were characteristic of the corresponding individual polymer (30-50 degrees for allylamine, 34-42 degrees for PEG). Roughness values varied from approximately 1 to 8 nm, but had no apparent affect on protein adhesion. Modifications terminating with a PEG layer reduced bovine serum albumin adhesion to the surface by approximately 80% as determined by ELISA and radiolabel binding studies. The hyperbranched PAAm and PEG surfaces described in this paper are nanometer-scale, multilayer films capable of reducing protein adhesion.  相似文献   

14.
A novel stationary phase for weak cation exchange (WCX) chromatography was prepared by "grafting from" strategy. Surface initiated atom transfer radical polymerization (ATRP) of acrylic acid (AA) was conducted in toluene medium, starting from the macromolecule initiators of poly(4‐vinylbenzyl chloride‐co‐divinylbenzene) (PCMS/DVB) beads. The amounts of poly(acrylic acid) grafted chains with different ATRP formulations were calculated based on the elemental analyses. The poly(acrylic acid) grafted beads obtained with different ATRP formulations were tried as chromatographic packings in the separation of proteins by ion‐exchange chromatography. The effect of the poly(acrylic acid) grafted chain lengths on PCMS/DVB beads for the separation of proteins was investigated in details. Simultaneously, characterization of the column was investigated as ion chromatographic stationary phase for the separation of inorganic cations. The results show that poly(acrylic acid) grafted columns had excellent performance for separation of proteins and inorganic cations. The highest of the dynamic capacity of the column was 35.55 mg/mL. The columns were provided with high column efficiency.  相似文献   

15.
This work describes studying the permanent grafting of carboxylic acid end-functionalized poly(ethylene glycol) methyl ether (PEG) chains of different molecular weights from the melt onto a surface employing poly(glycidyl methacrylate) ultrathin film as an anchoring layer. The grafting led to the synthesis of the complete PEG brushes possessing exceptionally high grafting density. The maximum thickness of the attached PEG films was strongly dependent on the length of the polymer chains being grafted. The maximum grafting efficiency was close to the critical entanglement molecular weight region for PEG. All grafted PEG layers were in the "brush regime", since the distance between grafting sites for the layers was lower than the end-to-end distance for the anchored macromolecules. Scanning probe microscopy revealed that the grafting process led to complete PEG layers with surface smoothness on a nanometric scale. Practically all samples were partly or fully covered with crystalline domains that disappeared when samples were scanned under water. Due to the PEG hydrophilic nature, the surface with the grafted layer exhibited a low (up to 21 degrees ) water contact angle.  相似文献   

16.
Nanoporous alumina surfaces have a variety of applications in biosensors, biofiltration, and targeted drug delivery. However, the fabrication route to create these nanopores in alumina results in surface defects in the crystal lattice. This results in inherent charge on the porous surface causing biofouling, that is, nonspecific adsorption of biomolecules. Poly(ethylene glycol) (PEG) is known to form biocompatible nonfouling films on silicon surfaces. However, its application to alumina surfaces is very limited and has not been well investigated. In this study, we have covalently attached PEG to nanoporous alumina surfaces to improve their nonfouling properties. A PEG-silane coupling technique was used to modify the surface. Different concentrations of PEG for different immobilization times were used to form PEG films of various grafting densities. X-ray photoelectron spectroscopy (XPS) was used to verify the presence of PEG moieties on the alumina surface. High-resolution C1s spectra show that with an increase in concentration and immobilization time, the grafting density of PEG also increases. Further, a standard overlayer model was used to calculate the thickness of PEG films formed using the XPS intensities of the Al2p peaks. The films formed by this technique are less than 2.5 nm thick, suggesting that such films will not clog the pores which are in the range of 70-80 nm.  相似文献   

17.
以7μm单分散交联聚甲基丙烯酸环氧丙酯树脂表面键合溴异丁酰溴为引发剂,以CuCl/CuCl2/2,2-联二吡啶(Bpy)为催化体系,采用封闭体系,在氮气保护下,以乙烯基苯磺酸钠(NaSS)为单体、N,N-二甲基甲酰胺(DMF)水溶液为溶剂,制备了强阳离子交换色谱(SCX)固定相,并用元素分析与红外光谱法对其进行了表征....  相似文献   

18.
Epoxide and aldehyde end‐functionalized poly(ethylene glycol)s (PEGs) (Mw = 400, 1000, 3400, 5000, and 20,000) were grafted to poly(ethylene terephthalate) (PET) film substrates that contained amine or alcohol groups. PET‐PAH and PET‐PEI were prepared by reacting poly(allylamine) (PAH) and polyethylenimine (PEI) with PET substrates, respectively; PET‐PVOH was prepared by the adsorption of poly(vinyl alcohol) (PVOH) to PET substrates. Grafting was characterized and quantified by the increase of the intensity of the PEG carbon peak in the X‐ray photoelectron spectra. Grafting yield was optimized by controlling reaction parameters and was found to be substrate‐independent in general. Graft density consistently decreased as PEG chain length was increased. This is likely due to the higher steric requirement of higher molecular weight PEG molecules. Water contact angles of surfaces containing long PEG chains (3400, 5000, and 20,000) are much lower than those containing shorter PEG chains (400 and 1000). This indicates that longer PEG chains are more effective in rendering surfaces hydrophilic. Protein adsorption experiments were carried out on PET‐ and PEG‐modified derivatives using collagen, lysozyme, and albumin. After PEG grafting, the amount of protein adsorbed was reduced in all cases. Trends in surface requirements for protein resistance are: surfaces with longer PEG chains and higher chain density, especially the former, are more protein resistant; PEG grafted to surfaces containing branched or network polymers is not effective at covering the underlying substrate, and thus does not protect the entire surface from protein adsorption; and substrates containing surface charge are less protein‐resistant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5389–5400, 2004  相似文献   

19.
A series of positionally pure triglycerides (TAGs) of the form LXL, YLY, AXA, and YAY was synthesized and analyzed by reversed-phase high-performance liquid chromatography/tandem mass spectrometry. L and A represent the linoleate and arachidate moieties, respectively, and X and Y represent large arrays of fatty acid moieties of various chain lengths, degree of unsaturations, double-bond positions, and cis/trans configurations. The abundances of the collision-induced decomposition (CID) products of ammoniated TAGs were examined as a function of these parameters. The major CID products, the diglyceride (DAG) product ions and the MH(+) ions, are plotted as functions of chain length for the saturated and monounsaturated series of X and Y. The following trends are observed in the data. TAGs with higher degrees of unsaturation tend to show greater relative abundances of MH(+) in the CID spectra of their ammoniated precursor ions. The position of the fatty acid constituents along the glycerol backbone also seems to influence the abundances of the MH(+) ion in the CID spectra of the ammoniated precursor ions. A fatty acid constituent with double bonds along the fatty acid chain positioned close to the carbonyl promotes the formation of the DAG product ion that corresponds to its loss upon CID of the ammoniated precursor ion. Linoleic acid substituents also seem to promote the formation of DAG product ions, but to a lesser extent. Data for the YAY TAGs are used to predict the abundances of the product ions in the CID spectra of ammoniated YAX TAGs. These data are discussed in context of a broader project to develop and validate software algorithims to support a platform for comprehensive analysis of complex mixtures of TAGs.  相似文献   

20.
This article presents effects of polydispersity in polymers grafted on spherical surfaces on grafted polymer chain conformations, grafted layer thickness, and free‐end monomer distribution within the grafted layer. At brush‐like grafting densities, as polydispersity index (PDI) increases, the scaling exponent of radius of gyration of grafted chains approaches that of a single chain grafted on the same nanoparticle, because polydispersity alleviates monomer crowding within the brush. At high PDI, the chains shorter than the number average chain length, Nn, have more compressed conformations, and the chains longer than Nn overall stretch less than in the monodisperse case. As seen in polydisperse flat brushes at high grafting densities, the grafted layer thickness on spherical nanoparticle increases with PDI. Polydispersity eliminates the region near the surface devoid of free‐end monomers seen in monodisperse cases, and it reduces the width of free‐end monomer distribution and shifts the free‐end monomer distribution close to the surface. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号