首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A square-wave voltammetric (SWV) method using a hanging mercury drop electrode (HMDE) has been developed for determination of the herbicide molinate in a biodegradation process. The method is based on controlled adsorptive accumulation of molinate for 10 s at a potential of –0.8 V versus AgCl/Ag. An anodic peak, due to oxidation of the adsorbed pesticide, was observed in the cyclic voltammogram at ca. –0.320 V versus AgCl/Ag; a very small cathodic peak was also detected. The SWV calibration plot was established to be linear in the range 5.0×10–6 to 9.0×10–6 mol L–1; this corresponded to a detection limit of 3.5×10–8 mol L–1. This electroanalytical method was used to monitor the decrease of molinate concentration in river waters along a biodegradation process using a bacterial mixed culture. The results achieved with this voltammetric method were compared with those obtained by use of a chromatographic method (HPLC–UV) and no significant statistical differences were observed.  相似文献   

2.
The proposed method for cyanide determination at the ultratrace level by differential pulse voltammetry is based in the sensitivity enhancement obtained when both Cu(II) and EDTA are present in the background electrolyte. Comparison of the detection limits and linear dynamic ranges using the conventional borate (pH 9.75), and the proposed borate-EDTA–Cu(II) background electrolytes was carried out. Best results have been obtained with the addition of 0.5 mmol l−1 EDTA and 0.02 mmol l−1 of Cu(II), which allow a detection limit of 1.7 μg l−1 CN (65 nmol l−1 — absolute detection limit 34 ng) with a precision better than ±2% for a 40 μg l−1 level. Calibration range extended from detection limit up to 100 μg l−1. Cyclic voltammetry indicates that the measured cyanide peak is obtained when the electrogenerated CuCN adsorbed onto the hanging mercury drop electrode surface, is oxidised at positive going potential scan. The method has been successfully applied to various industrial waste waters such as metal-finishing waste waters, water/sand mixtures from cleaning processes of coke production, leachates from wastes obtained from electrolytic cells of aluminium production, and liquors from gold extraction industry. Results obtained by the proposed method showed good agreement with those obtained by the standard methods (ion-selective potentiometry and the spectrophotometric pyridine method).  相似文献   

3.
The electrochemical reduction and adsorptive voltammetric behaviour of pravastatin have been studied by means of cyclic and square-wave voltammetry at a hanging mercury-drop electrode in electrolytes of different pH. Within the entire pH range (2.0–9.0) in Britton–Robinson buffer, pravastatin gave rise to a single voltammetric peak in the potential interval from −1.22 to −1.44 V, depending on pravastatin concentration. It was found that the reduction of pravastatin proceeds via a relatively stable intermediate, which is transformed to the final electroinactive product by a coupled chemical reaction or can be re-oxidized back to pravastatin. The rate of chemical transformation is controlled by the proton concentration. The electrode mechanism has the properties of a surface redox reaction. A sensitive analytical method for trace analysis of pravastatin based on the adsorptive stripping technique has been developed. The calibration plot was linear in the range 8×10−8–5×10−7 mol L−1. Application of the square-wave voltammetric method to determination of pravastatin in a pharmaceutical dosage form, without sample pretreatment, resulted in acceptable deviation from the stated concentration.  相似文献   

4.
The electrochemical behaviour of the pesticide metam (MT) at a glassy carbon working electrode (GCE) and at a hanging mercury drop electrode (HMDE) was investigated. Different voltammetric techniques, including cyclic voltammetry (CV) and square wave voltammetry (SWV), were used. An anodic peak (independent of pH) at +1.46 V vs AgCl/Ag was observed in MT aqueous solution using the GCE. SWV calibration curves were plotted under optimized conditions (pH 2.5 and frequency 50 Hz), which showed a linear response for 17–29 mg L−1. Electrochemical reduction was also explored, using the HMDE. A well defined cathodic peak was recorded at −0.72 V vs AgCl/Ag, dependent on pH. After optimizing the operating conditions (pH 10.1, frequency 150 Hz, potential deposition −0.20 V for 10 s), calibration curves was measured in the concentration range 2.5×10−1 to 1.0 mg L−1 using SWV. The electrochemical behaviour of this compound facilitated the development of a flow injection analysis (FIA) system with amperometric detection for the quantification of MT in commercial formulations and spiked water samples. An assessment of the optimal FIA conditions indicated that the best analytical results were obtained at a potential of +1.30 V, an injection volume of 207 μL and an overall flow rate of 2.4 ml min−1. Real samples were analysed via calibration curves over the concentration range 1.3×10−2 to 1.3 mg L−1. Recoveries from the real samples (spiked waters and commercial formulations) were between 97.4 and 105.5%. The precision of the proposed method was evaluated by assessing the relative standard deviation (RSD %) of ten consecutive determinations of one sample (1.0 mg L−1), and the value obtained was 1.5%.  相似文献   

5.
This work describes the electroanalytical determination of pendimethalin herbicide levels in natural waters, river sediment and baby food samples, based on the electro-reduction of herbicide on the hanging mercury drop electrode using square wave voltammetry (SWV). A number of experimental and voltammetric conditions were evaluated and the best responses were achieved in Britton-Robinson buffer solutions at pH 8.0, using a frequency of 500 s− 1, a scan increment of 10 mV and a square wave amplitude of 50 mV. Under these conditions, the pendimethalin is reduced in an irreversible process, with two reduction peaks at − 0.60 V and − 0.71 V, using a Ag/AgCl reference system. Analytical curves were constructed and the detection limit values were calculated to be 7.79 μg L− 1 and 4.88 μg L− 1, for peak 1 and peak 2, respectively. The precision and accuracy were determinate as a function of experimental repeatability and reproducibility, which showed standard relative deviation values that were lower than 2% for both voltammetric peaks. The applicability of the proposed methodology was evaluated in natural water, river sediments and baby food samples. The calculated recovery efficiencies demonstrate that the proposed methodology is suitable for determining any contamination by pendimethalin in these samples. Additionally, adsorption isotherms were used to evaluate information about the behavior of pendimethalin in river sediment samples.  相似文献   

6.
Five new rat monoclonal antibodies (mAbs) for 2,4,6-trinitrotoluene (TNT) and other nitroaromatic compounds, including, especially, the metabolite 2-amino-4,6-dinitrotoluene (2-ADNT), are described. Five heterogeneous, competitive enzyme-linked immunosorbent assays (ELISAs) were developed. Assay 1 uses mAb DNT4 3F6 as recognition element and gives a standard curve for TNT in 40 mmol L–1 phosphate buffered saline (PBS) with a test midpoint (IC50) of 0.26±0.08 g L–1 (n=20). Assay 2 (mAb DNT4 4G4) has an IC50 of 0.35±0.07 g L–1 (n=18), assay 3 (mAb DNT4 1A3) has an IC50 of 0.73±0.14 g L–1 (n=15), and assay 4 (mAb DNT4 1A7) has an IC50 of 2.32±0.70 g L–1 (n=15). Assay 5 (mAb DNT2 4B4) is very selective for 2-ADNT and has an IC50 of 8.5±1.7 g L–1 (n=15) in PBS. These antibodies for nitroaromatic compounds differ not only in their sensitivity but also in their selectivity. Major cross-reactants are 1,3,5-trinitrobenzene, 2-ADNT, 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-dinitroaniline, 3,5-dinitroaniline, and 2,6-dinitroaniline. Although assay 5 is not highly sensitive, the mAb DNT2 4B4 in this assay is highly selective for 2-ADNT. Of all the compounds tested, only 2,4-dinitroaniline and 3,5-dinitroaniline had relevant cross reactivities, 18% and about 26%, respectively. Two ELISAs, using mAbs DNT4 3F6 and DNT2 4B4, were used to analyze different concentrations of TNT and 2-ADNT, respectively, in three different surface water matrices (river and lake water). Both assays were affected by the matrix, but usually performed well (recovery within the range 70–120%). In addition, these ELISAs were used to analyze mixtures of TNT, 2-ADNT, and 4-ADNT, at three different concentrations, in the same water matrices. A different recognition pattern was clearly visible with both assays and depended on the cross reactivities of the corresponding mAb.Dedicated to the memory of Wilhelm Fresenius  相似文献   

7.
A carbon paste electrode was used for the electrochemical determination of linuron concentrations in water and vegetable extracts. Optimal conditions were established with respect to electrode activation (electrochemical pretreatment), time accumulation, potential accumulation, scan rate, and pH. The limit of detection achieved with a pre-concentration step was 23.0 μg L−1. Recovery measurements in vegetable extract and natural water samples were in the range of 98-103%, indicating that the proposed electrochemical method can be employed to analyze linuron in these matrices. The determination results were in good agreement with HPLC results.  相似文献   

8.
Certain natural waters appear to contain copper sulfide (CuxS) nanoparticles in nanomolar concentrations (as Cu). These nanoparticles have been tentatively identified by the characteristic pH below which they deposit sulfide onto Hg electrodes. A proposed alternate approach to studying CuxS nanoparticles relies on their hydrophobicity, which causes them to sorb to Hg electrodes; there they can undergo reduction at −0.9 to −1.1 V vs. Ag/AgCl. However, solutions supersaturated with respect to Cu sulfide phases also form CuxS directly at Hg electrode surfaces. The voltammetric reduction peaks obtained from these deposits are not clearly distinguishable from those obtained from sorbed nanoparticles. Surface formation of CuxS, which appears to be limited to approximately two layers, involves a reaction between Cu amalgam and electrodeposited HgS. Surface-formed CuxS could be problematic in studies of CuxS nanoparticles, but this obstacle can be avoided by conducting voltammetric accumulations at potentials too negative for HgS electrodeposition (e.g. −0.85 V). Electroreduction of surface-formed CuxS occurs by a two-dimensional instantaneous hole nucleation and growth process.  相似文献   

9.
《Analytical letters》2012,45(3):465-478
ABSTRACT

A technique is presented for the determination of trace amounts of copper(II) by adsorptive cathodic stripping voltammetry. The procedure is based on adsorptive accumulation of copper(II)-Alizarin Red S (ARS) complex on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of the reduction current of the adsorbed complex at -0.16 V (vs. Ag/AgCl). The height of the copper -ARS reduction peak is linearly dependent upon the copper(II) concentration between 0.2-15 and 15-500 ng.ml?1. The detection limit of the technique is 0.05 ng.ml?1 copper(II) for a collection time of 1 minute. The method is free from most interferences. The procedure has been successfully applied to the determination of trace amounts of copper(II) in some analytical grade salts.  相似文献   

10.
Summary.  Adsorptive stripping voltammetry for the determination of guanethidine is employed. The drug is adsorbed onto the hanging mercury drop electrode, and the reduction current of the accumulated drug is measured by scanning the potential in the cathodic direction. The adsorption and redox behaviour are explored by cyclic voltammetry. Optimum experimental conditions include preconcentration potential, solution pH, potential scan rate, and preconcentration time. A detection limit of guanethidine of 0.992 ng/cm3 was obtained. Corresponding author. E-mail: ensafa@yahoo.com Received March 29, 2002; accepted April 12, 2002  相似文献   

11.
甘草苷在悬汞电极上的电化学行为及方法研究   总被引:1,自引:0,他引:1  
运用循环伏安法(CV)考察了甘草苷在悬汞电极(HMDE)上的电化学还原行为,在-0.7~-1.7 V(vs.SCE)电位窗口及0.10 mol/L(NH4)2SO4溶液中甘草苷在HMDE上的循环伏安行为是一在低扫描速度(<100 mV/s)下受吸附控制,在高扫描速度下受扩散控制的不可逆还原过程,还原峰电位(Epc)为-1.491 V。运用计时库仑法(CC)、计时电流法(CA)测定并计算了甘草苷的电荷传递系数α、扩散系数D以及表观速率常数Kf等电极过程动力学参数。初步探讨了甘草苷在HMDE上的反应机理,同时运用方波伏安法(SWV)研究了甘草苷在HMDE上的方波伏安行为,还原峰电流与其浓度在1.2×10-6~1.2×10-5mol/L及1.2×10-5~1.2×10-3mol/L范围内呈良好的线性关系,相关系数R=0.9936及0.9966,检出限8.0×10-7mol/L,据此可建立直接电化学测定甘草苷含量的方法。  相似文献   

12.
Curcumin (CU) shows a wide range of pharmacological properties including antioxidant, anti‐inflammatory, and antitumor effects. In order to understand the chemical basis of different activities of curcumin, we have studied the oxidation and reduction of curcumin. Based on cyclic and differential pulse voltammetric methods, using carbon paste and hanging mercury drop electrodes, in the present study we tested different parameters to optimize the conditions for the determination of curcumin and its electrochemical characteristics. Better results were obtained via differential pulse voltammetry using carbon paste electrode. Curcumin yields well‐defined differential pulse voltammetric responses with well‐defined oxidation (in the potential region of 0.3–0.6 V, vs. Ag/AgCl) and reduction (at 0.3 V) peaks using carbon paste electrode.  相似文献   

13.
In the work the procedure of chromium(VI) determination by catalytic adsorptive stripping voltammetry (CAdSV) with application of fumed silica, is presented. Two variants of the method are proposed: in the first fumed silica is put directly to the electrolytic cell containing tested solution, in the second the silica is shaken with the sample and next centrifuged. The effectiveness of many surface‐active substances removal from synthetic solutions as well as natural water samples, is studied. In the experiments the fumed silica (Sigma‐Aldrich) of the specific surface area in the range 200–390 m2 g?1 was used. Two types of the working electrodes were applied, i.e., hanging mercury drop electrode (HMDE) and cyclic renewable mercury film electrode (Hg(Ag)FE). In the silica presence i) the relative standard deviation (RSD) for 0.1 μg L?1 Cr(VI) is <2% (HMDE) and <5% (Hg(Ag)FE), n=7, ii) the detection limits estimated deposition time 20 s were respectively 14 ng L?1 (HMDE) and 22 ng L?1 (Hg(Ag)FE). The accuracy of the method was tested by studying the recovery of Cr(VI) from spiked natural water samples.  相似文献   

14.
A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L−1 Zn(II), 5-200 μg L−1 Cd(II), 10-200 μg L−1 Pb(II), 20-400 μg L−1 Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L−1, respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L−1 Zn(II), 13 μg L−1 Cd(II), 13 μg L−1 Pb(II) and 27 μg L−1 Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area.  相似文献   

15.
《Electroanalysis》2006,18(11):1081-1089
This paper describes the voltammetric behavior of As(III) at the hanging mercury drop electrode (HMDE) in the presence of sodium diethyl dithiocarbamate (SDDC) and a new voltammetric method for the determination of As(III) at trace levels. The method is based on the adsorptive deposition of a As(III) complex with SDDC at ?0.45 V (vs. Ag/AgCl) on the HMDE in acidic medium of 0.01 mol L?1 HCl (pH 2.0) and its cathodic stripping during the potential scan (100 mV s?1). The linear range for the determination of As(III) in the presence of SDDC (4 μmol L?1) in water samples was between 1 and 10 μg L?1 for a deposition time of 300 s (r=0.994) and between 10 and 100 μg L?1 for a deposition time of 60 s (r=0.999). For the determination of As(III) in dialysis concentrate samples, the linear range was between 5 and 25 μg L?1 for a deposition time of 180 s (r=0.992) and between 10 and 100 μg L?1 for a deposition time of 60 s (r=0.996). Detection limits of 0.3 and 2.2 μg L?1 in water and dialysis concentrate samples were calculated for the method using a deposition time of 300 and 180 s, respectively. Recovery values between 93.0 and 110.0% for As(III) added to deionized, mineral, seawater (synthetic and real) and dialysis concentrate samples prove the satisfactory accuracy and applicability of the procedure.  相似文献   

16.
The electrochemical properties of valacyclovir, an antiviral drug, were investigated in pH range 1.8-12.0 by cyclic, differential pulse and square-wave voltammetry. The drug was irreversibly oxidized at a glassy carbon electrode in one or two oxidation steps, which are pH-dependent. For analytical purposes, a very resolved diffusion controlled voltammetric peak was obtained in Britton-Robinson buffer at pH 10.0 using differential pulse and square-wave modes. Limits of detection were 1.04 × 10−7 and 4.60 × 10−8 M for differential pulse and square-wave voltammetry, respectively. The applicability to direct assays of tablets, spiked human serum and simulated gastric fluid, was described.  相似文献   

17.
《Analytical letters》2012,45(15):2835-2847
Abstract

A sensitive voltammetric method for the determination of trace boron, based on the formation of the complex of boric acid with 4‐hydroxy‐5‐[salicylideneamino]‐2‐7‐naphthalenedisulfonic acid (azomethine H) is described. The reduction of the boric acid‐azomethine H complex at a hanging mercury drop electrode was exploited by square wave voltammetry (SWV) and cyclic voltammetry to determine boron in natural water samples, which were collected in the regions surrounding the boron mines of Central Anatolia. A reduction peak that belongs to the boric acid‐azomethine H complex at this electrode was observed at ?1.05 V vs. Ag/AgCl/KCl(sat.). The effects of various parameters, such as ligand concentration, boric acid concentration, and formation time of the boric acid‐azomethine H complex, were investigated. Electrochemical experiments were conducted in 1.0 M HOAc/0.5 M NH4OAc buffer at pH of 4.4±0.2. Linear working range was established by regression analysis between 5.0×10?8 M and 1.0×10?4 M. The probable metal cation interferences in water samples were eliminated by adding EDTA (ethylenediaminetetraacetic acid) to the samples. Data obtained using the square wave voltammetric (SWV) technique was compared statistically with inductively coupled plasma mass spectroscopy (ICP‐MS) data. Evaluation of the method based on statistical data was performed and the values of the limit of detection (LOD) and limit of quantitation (LOQ) were found to be 4.17×10?6 M and 1.39×10?5 M, respectively.  相似文献   

18.
Use of square-wave voltammetry (SWV) for determination of cefoperazone (CFPZ) in some buffers, bacterial culture, urine, and milk is described. CFPZ provides a specific voltammetric signal which is affected by pH and solution components. Determination of CFPZ in Britton–Robinson buffer, pH 4.4, is sensitive with a low detection limit (about 0.5 nmol L–1). In a more complex medium (bacterial 2YT medium, pH 7.2) the detection limit was approximately 1.5 mol L–1. We provide evidence that SWV is a suitable and quick method for CFPZ determination in a culture of living bacteria without separation of biomass. We have found big differences between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) in cultivation in the presence of CFPZ, depending on time. When CFPZ is cleaved by penicillinase, a new SWV peak b appears at more positive potentials. This peak rises both with increasing concentration of enzyme and with cleavage time while the original CFPZ peak is simultaneously decreasing. We determined the concentration of CFPZ in the drug Pathozone by the standard addition method and achieved good agreement with the declared value of CFPZ in the drug. With a simple pretreatment procedure it is possible to determine CFPZ in milk; for urine no pretreatment was required. Using SWV we could detect CFPZ concentrations as low as 500 nmol L–1 in bovine milk and human urine.  相似文献   

19.
Capabilities for heavy metal speciation of anodic stripping voltammetry (ASV) and constant-current stripping chronopotentiometry (SCP) in both mercury drop (HMDE) and mercury film rotating disk (MFE-RDE) electrodes are compared. For this purpose, the Cd(II)–glycine and Cd(II)–polymethacrylate (PMA) systems are used as models of simple labile and macromolecular labile complexes adsorbing onto the electrode, respectively. The results suggest that SCP could be a valuable alternative to the more widespread ASV in this kind of study. Concerning the electrode, the MFE-RDE is less user-friendly than the HMDE, but presents a better definition of both the hydrodynamic conditions during the deposition step and the stripping regime during the oxidation. An important interference in SCP is the dissolved oxygen, which can be minimised by combining relatively large oxidation currents and low stirring rates. Moreover, for Cd–PMA, double peaks have been observed in both ASV and SCP, which seems to be due to the lack of enough ligand excess to complex the metal ions released by the amalgam oxidation. Anyway, this problem can be minimised by optimising the rotation rate of the electrode and ensuring enough ligand excess.  相似文献   

20.
The anodic voltammetric behavior of methotrexate was studied at glassy carbon electrode in acetate buffer (pH = 3.6) solution using cyclic, square-wave voltammetric and chronocoulometric techniques. The oxidation of methotrexate is an irreversible diffusion-controlled process. The oxidation mechanism was proposed and discussed in this work. The dependence of the current on pH, the concentration and nature of buffer, and instrumental parameters were investigated to optimize the experimental conditions for the determination of methotrexate. It was found that in the range of 8.0 × 10−7–2.0 × 10−5 mol/L, the currents measured by square-wave voltammetry presented a good linear property as a function of the concentrations of methotrexate. In addition, validation parameters, such as reproducibility, sensitivity and recovery were evaluated as well. The proposed method was also successfully applied for the determination of methotrexate in diluted human urine with good satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号