首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Singly bonded PhCH(2)C(60)-C(60)CH(2)Ph dimers are generated via controlled-potential bulk electroreduction and electrooxidation of 1,2-(PhCH(2))HC(60). The reaction mixture was purified by HPLC, and the isolated fraction was characterized with single-crystal X-ray diffractions, (1)H and (13)NMR, MS, elemental analysis, and cyclic voltammetry. It was shown that the fraction consists of two HPLC-inseparable PhCH(2)C(60)-C(60)CH(2)Ph regioisomers, which are assigned as the meso and racemic regioisomers. The bulk electrolysis processes for the formation of the dimers were followed by in situ cyclic voltammetry and were further corroborated with an in situ voltammetric titration of 1,2-(PhCH(2))HC(60) with tetra-n-butylammonium hydroxide (TBAOH), on the basis of which a reaction mechanism is proposed.  相似文献   

2.
Alkylation of (ArNHCH2CH2){(2-C5H4N)CH2}NH with RX [RX = MeI, 4-CH2=CH(C6H4)CH2Cl) and (2-C5H5N)CH2Cl] in the presence of base has allowed access to the sterically demanding multidentate nitrogen donor ligands, {(2,4,6-Me3C6H2)NHCH2CH2}{(2-C5H4N)CH2}NMe (L1), {(2,6-Me3C6H3)NHCH2CH2}{(2-C5H4N)CH2}NCH2(C6H4)-4-CH=CH2 (L2) and (ArNHCH2CH2){(2-C5H4N)CH2}2N (Ar = 2,4-Me2C6H3 L3a, 2,6-Me2C6H3 L3b) in moderate yield. L3 can also be prepared in higher yield by the reaction of (NH2CH2CH2){(2-C5H4N)CH2}2N with the corresponding aryl bromide in the presence of base and a palladium(0) catalyst. Treatment of L1 or L2 with MCl2 [MCl2 = CoCl2.6H2O or FeCl2(THF)1.5] in THF affords the high spin complexes [(L1)MCl2](M = Co 1a, Fe 1b) and [(L2)MCl2](M = Co 2a, Fe 2b) in good yield, respectively; the molecular structure of reveals a five-coordinate metal centre with bound in a facial fashion. The six-coordinate complexes, [(L3a)MCl2](M = Co 3a, Fe 3b, Mn 3c) are accessible on treatment of tripodal L3a with MCl2. In contrast, the reaction with the more sterically encumbered leads to the pseudo-five-coordinate species [(L3b)MCl2](M = Co 4a, Fe 4b) and, in the case of manganese, dimeric [(L3b)MnCl(mu-Cl)]2 (4c); in 4a and 4b the aryl-substituted amine arm forms a partial interaction with the metal centre while in 4c the arm is pendant. The single crystal X-ray structures of , 1a, 3b.MeCN, 3c.MeCN, 4b.MeCN and 4c are described as are the solution state properties of 3b and 4b.  相似文献   

3.
To model the Ti-olefin interaction in the putative [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(R')(olefin)(+) intermediates in "constrained geometry" Ti-catalyzed olefin polymerization, chelated alkoxide olefin complexes [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))(+) have been investigated. The reaction of [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(2) (1a,b; R = H, Me) with HOCMe(2)CH(2)CH(2)CH=CH(2) yields mixtures of [eta(5)-C(5)R(4)SiMe(2)NH(t)Bu]TiMe(2)(OCMe(2)CH(2)CH(2)CH=CH(2)) (2a,b) and [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(OCMe(2)CH(2)CH(2)CH=CH(2)) (3a,b). The reaction of 2a/3a and 2b/3b mixtures with B(C(6)F(5))(3) yields the chelated olefin complexes [[eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][MeB(C(6)F(5))(3)] (4a,b; 71 and 89% NMR yield). The reaction of 2b/3b with [Ph(3)C][B(C(6)F(5))(4)] yields [[eta(5): eta(1)-C(5)Me(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][B(C(6)F(5))(4)] (5b, 88% NMR yield). NMR studies establish that 4a,b and 5b exist as mixtures of diastereomers (isomer ratios: 4a/4a', 62/38; 4b/4b', 75/25; 5b/5b', 75/25), which differ in the enantioface of the olefin that is coordinated. NMR data for these d(0) metal olefin complexes show that the olefin coordinates to Ti in an unsymmetrical fashion primarily through C(term) such that the C=C pi bond is polarized with positive charge buildup on C(int). Dynamic NMR studies show that 4b/4b' undergoes olefin face exchange by a dissociative mechanism which is accompanied by fast inversion of configuration at Ti ("O-shift") in the olefin-dissociated intermediate. The activation parameters for the conversion of 4b to 4b' (i.e., 4b/4b' face exchange) are: DeltaH = 17.2(8) kcal/mol; DeltaS = 8(1) eu. 4a/4a' also undergoes olefin face exchange but with a lower barrier (DeltaH = 12.2(9) kcal/mol; DeltaS = -2(3) eu), for the conversion of 4a to 4a'.  相似文献   

4.
Photochemical reaction of [CH2(eta5-C5H4)2][Rh(C2H4)2]2 1 with dmso led to the stepwise formation of [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(dmso)] 2a and [CH2(eta5-C5H4)2][Rh(C2H4)(dmso)]2 2b. Photolysis of 1 with vinyltrimethylsilane ultimately yields three isomeric products of [CH2(eta5-C5H4)2][Rh(CH2=CHSiMe3)2]2, 3a, 3b and 3c which are differentiated by the relative orientations of the vinylsilane. When this reaction is undertaken in d6-benzene, H/D exchange between the solvent and the alpha-proton of the vinylsilane is revealed. In addition evidence for two isomers of the solvent complex [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(eta2-toluene)] was obtained in these and related experiments when the photolysis was completed at low temperature without substrate, although no evidence for H/D exchange was observed. Photolysis of 1 with Et3SiH yielded the sequential substitution products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiEt3)H] 4a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H]2 4b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H][Rh(SiEt3)2(H)2] 4c and [CH2(eta5-C5H4)2][Rh(SiEt3)2(H)2]2 4d; deuteration of the alpha-ring proton sites, and all the silyl protons, of 4d was demonstrated in d6-benzene. This reaction is further complicated by the formation of two Si-C bond activation products, [CH2(eta5-C5H4)2][RhH(mu-SiEt2)]2 5 and [CH2(eta5-C5H4)2][(RhEt)(RhH)(mu-SiEt2)2] 6. Complex 5 was also produced when 1 was photolysed with Et2SiH2. When the photochemical reactions with Et3SiH were repeated at low temperatures, two isomers of the unstable C-H activation products, the vinyl hydrides [CH2(eta5-C5H4)2][{Rh(SiEt3)H}{Rh(SiEt3)}(mu-eta1,eta2-CH=CH2)] 7a and 7b, were obtained. Thermally, 4c was shown to form the ring substituted silyl migration products [(eta5-C5H4)CH2(C5H3SiEt3)][Rh(SiEt3)2(H)2]2 8 while 4b formed [CH2(C5H3SiEt3)2][Rh(SiEt3)2(H)2]2 (9a and 9b) upon reaction with excess silane. The corresponding photochemical reaction with Me3SiH yielded the expected products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiMe3)H] 10a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H]2 10b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H][Rh(SiMe3)2(H)2] 10c and [CH2(eta5-C5H4)2][Rh(SiMe3)2(H)2]2 10d. However, three Si-C bond activation products, [CH2(eta5-C5H4)2][(RhMe)(RhH)(mu-SiMe2)2] 11, [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhMe)(mu-SiMe2)2] 12 and [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhH)(mu-SiMe2)2] 13 were also obtained in these reactions.  相似文献   

5.
The hetero-metal clusters [h5-C5H4C(O)CH2CH2C(O)OCH3]FeCoM(m3-S)(CO)8 (M = Mo 1, M = W 2) were prepared by thermal reactions of FeCo2(CO)9(m3-S) with metal exchange reagent [h5-C5H4C(O)CH2CH2C(O)OCH3]M(CO)3Na (M = Mo or W) in THF. Cluster 1 reacted with 2,4-dinitrophenylhydrazine at room temperature to yield the cluster hydrazone derivative (m3-S)CoFeMo(CO)8[h5-C5H4C(NR)Me] [R = NHC6H3-2,4-(NO2)2] 3. All the compounds were characterized by elemental analyses, IR and NMR spectra. Cluster 1 was determined by single crystal X-ray diffraction. Crystal data: C18H11O11SCoFeMo, Mr = 646.05, triclinic, space group P_1, a = 8.148(2), b = 10.685(3), c = 13.410(4) ?, a = 100.077(5), b = 102.452(5), g = 91.108(6)°, V = 1120.4(5) ?3, Z = 2, Dc = 1.915 g/cm3, F(000) = 636, m = 2.071 mm-1, the final R = 0.0378 and wR = 0.0968 for 5074 observations with (I > 2s(I)).  相似文献   

6.
The reaction of cyanogen chloride with [1-(4-C(7)H(7))-12-(C(5)H(3)-3,4-(CH(3))(2))-C(2)B(10)H(10)] (7) was found to yield two new C(5)-substituted carborane cluster-based compounds, [1-(4-C(7)H(7))-12-(C(5)H(2)-3-(CN)-3,4-(CH(3))(2))-C(2)B(10)H(10)] (8) and [1-(4-C(7)H(7))-12-(C(5)H-2,4-(CN)(2)-3,4-(CH(3))(2))-C(2)B(10)H(10)] (9). This cyano-substitution pattern is in contrast to the known substitution for the analogous organic quinarene[5.6.7] system. The observed unique cluster-based products may be understood by a combination of steric and electronic effects. Compounds 8 and 9 were characterized by complete multinuclear NMR, (1)H-(1)H COSY NMR, (1)H-(13)C HMQC NMR, FTIR, UV-Vis, IR, MS data and a single crystal analysis for 8 [X-ray data for 8: C(17)H(25)B(10)N, monoclinic, space group P2(1)/n with cell constants a = 8.6794(17) ?, b = 11.021(2) ?, c = 43.175(9) ?, β = 91.00(3)°, V = 4129.2(14) ?(3), Z = 8, R(1) = 0.0729, wR(2) = 0.1464].  相似文献   

7.
Reaction of RhCl(1,5-cod)(THP), where THP = P(CH(2)OH)(3), with several PRR'2 phosphines (R = or not equal R') generates, concomitantly with R'H, the derivatives RhCl(PRR'(2))[P,P-R'(R)POCH(2)P(CH(2)OH)(2)] in two isomeric forms. The hydrogen of the hydrocarbon co-product derives from a THP hydroxyl group which becomes an 'alkoxy' group at the residual PRR' moiety, this resulting in the P,P-chelated R'(R)POCH(2)P(CH(2)OH)(2) ligand. One of the isomers of the PPh(3) system, cis-RhCl(PPh(3))[P,P-P(Ph)(2)OCH(2)P(CH(2)OH)(2)], was structurally characterized (cis refers to the disposition of the P atoms with Ph substituents).  相似文献   

8.
2,4-Diaryl- and 2,4-diferrocenyl-1,3-dithiadiphosphetane disulfide dimers (RP(S)S)(2) (R = Ph (1a), 4-C(6)H(4)OMe (1b), FeC(10)H(9) (Fc) (1c)) react with a variety of alcohols, silanols, and trialkylsilyl alcohols to form new dithiophosphonic acids in a facile manner. Their corresponding salts react with chlorogold(I) complexes in THF to produce dinuclear gold(I) dithiophosphonate complexes of the type [AuS(2)PR(OR')](2) in satisfactory yield. The asymmetrical nature of the ligands allows for the gold complexes to form two isomers (cis and trans) as verified by solution (1)H and (31)P[(1)H] NMR studies. The X-ray crystal structures of [AuS(2)PR(OR')](2) (R = Ph, R' = C(5)H(9) (2); R = 4-C(6)H(4)OMe, R' = (1S,5R,2S)-(-)-menthyl (3); R = Fc, R' = (CH(2))(2)O(CH(2))(2)OMe (4)) have been determined. In all cases only the trans isomer is obtained, consistent with solid state (31)P NMR data obtained for the bulk powder of 3. Crystallographic data for 2 (213 K): orthorhombic, Ibam, a = 12.434(5) A, b = 19.029(9) A, c = 11.760(4) A, V = 2782(2) A(3), Z = 4. Data for 3 (293 K): monoclinic, P2(1), a = 7.288(2) A, b = 12.676(3) A, c = 21.826(4) A, beta = 92.04(3) degrees, V = 2015.0(7) A(3), Z = 2. Data for 4 (213 K): monoclinic, P2(1)/n, a = 11.8564(7) A, b = 22.483(1) A, c = 27.840(2) A, beta = 91.121(1) degrees, V = 7419.8(8) A(3), Z = 8. Moreover, 1a-c react with [Au(2)(dppm)Cl(2)] to form new heterobridged trithiophosphonate complexes of the type [Au(2)(dppm)(S(2)P(S)R)] (R = Fc (12)). The luminescence properties of several structurally characterized complexes have been investigated. Each of the title compounds luminesces at 77 K. The results indicate that the nature of Au...Au interactions in the solid state has a profound influence on the optical properties of these complexes.  相似文献   

9.
The reactions of the ethynyl radical (C(2)H) with propyne and allene are studied at room temperature using an apparatus that combines the tunability of the vacuum ultraviolet radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory with time-resolved mass spectrometry. The C(2)H radical is prepared by 193-nm photolysis of CF(3)CCH and the mass spectrum of the reacting mixture is monitored in time using synchrotron-photoionization with a dual-sector mass spectrometer. Analysis using photoionization efficiency curves allows the isomer-specific detection of individual polyynes of chemical formula C(5)H(4) produced by both reactions. The product branching ratios are estimated for each isomer. The reaction of propyne with ethynyl gives 50-70% diacetylene (H-C[triple bond]C-C[triple bond]C-H) and 50-30% C(5)H(4), with a C(5)H(4)-isomer distribution of 15-20% ethynylallene (CH(2)=C=CH-C[triple bond]CH) and 85-80% methyldiacetylene (CH(3)-C[triple bond]C-C[triple bond]CH). The reaction of allene with ethynyl gives 35-45% ethynylallene, 20-25% methyldiacetylene and 45-30% 1,4-pentadiyne (HC[triple bond]C-CH(2)-C[triple bond]CH). Diacetylene is most likely not produced by this reaction; an upper limit of 30% on the branching fraction to diacetylene can be derived from the present experiment. The mechanisms of polyynes formation by these reactions as well as the implications for Titan's atmospheric chemistry are discussed.  相似文献   

10.
Reactions of Pr(NO3)3 with Ph2P(O)-CH2CH2-P(O)Ph2 and Ph2P(O)-C5H3N-P(O)Ph2 yielded layered network coordination polymers with bidentate ligands spanning the lanthanide atoms in a bridging fashion. The praseodymium cations with "spacer" ligands form two-dimensional building blocks assembling into either square grid or herringbone network.  相似文献   

11.
The synthesis and characterization of the extremely hindered phosphine ligands, P(CH(2)CH(2)P(t)Bu(2))(3) (P(2)P(3)(tBu), 1), PhP(CH(2)CH(2)P(t)Bu(2))(2) (PhP(2)P(2)(tBu), 2), and P(CH(2)CH(2)CH(2)P(t)Bu(2))(3) (P(3)P(3)(tBu), 3) are reported, along with the synthesis and characterization of ruthenium chloro complexes RuCl(2)(P(2)P(3)(tBu)) (4), RuCl(2)(PhP(2)P(2)(tBu)) (5), and RuCl(2)(P(3)P(3)(tBu)) (6). The bulky P(2)P(3)(tBu) (1) and P(3)P(3)(tBu) (3) ligands are the most sterically encumbered PP(3)-type ligands so far synthesized, and in all cases, only three phosphorus donors are able to bind to the metal center. Complexes RuCl(2)(PhP(2)P(2)(tBu)) (5) and RuCl(2)(P(3)P(3)(tBu)) (6) were characterized by crystallography. Low temperature solution and solid state (31)P{(1)H} NMR were used to demonstrate that the structure of RuCl(2)(P(2)P(3)(tBu)) (4) is probably analogous to that of RuCl(2)(PhP(2)P(2)(tBu)) (5) which had been structurally characterized.  相似文献   

12.
Cao DK  Li YZ  Song Y  Zheng LM 《Inorganic chemistry》2005,44(10):3599-3604
Based on the [hydroxy(4-pyridyl)methyl]phosphonate ligand, three compounds with formula Ni{(4-C(5)H(4)N)CH(OH)PO(3)}(H(2)O) (1), Cd{(4-C(5)H(4)N)CH(OH)PO(3)}(H(2)O) (2), and Gd{(4-C(5)H(4)N)CH(OH)P(OH)O(2)}(3).6H(2)O (3) have been synthesized under hydrothermal conditions. The crystal data for 1 are as follows: orthorhombic, space group Pbca, a = 8.7980(13) A, b = 10.1982(15) A, and c = 17.945(3) A. For 2 the crystal data are as follows: monoclinic, space group C2/c, a = 23.344(6) Angstroms, b = 5.2745(14) Angstroms, c = 16.571(4) Angstroms, and beta = 121.576(4) degrees. The crystal data for 3 are as follows: rhombohedral, space group R, a = 22.2714(16) Angstroms, b = 22.2714(16) Angstroms, and c = 9.8838(11) Angstroms. Compound 1 adopts a three-dimensional pillared layered structure in which the inorganic layers made up of corner-sharing {NiO(5)N} octahedra and {CPO(3)} tetrahedra are connected by pyridyl groups. A two-dimensional layer structure is found in compound 2, which contains alternating inorganic double chains and pyridyl rings. Compound 3 has a one-dimensional chain structure where the Gd atoms are triply bridged by O-P-O linkages. The pyridyl nitrogen atom in 3 remains uncoordinated and is involved in the interchain hydrogen bonds. Magnetic susceptibility studies of 1 and 3 reveal that weak ferromagnetic interactions are mediated between Ni(II) centers in compound 1. For compound 3, the behavior is principally paramagnetic.  相似文献   

13.
The reactions of elemental indium and In(I)Br with the carbonyl-free organonickel complexes (eta(5)-C(5)H(5))(PR(3))Ni-Br (R = CH(3), C(6)H(5)) have been studied in some detail. Either redox reactions to yield the ionic products [(eta(5)-C(5)H(5))(PR(3))(2)Ni][InBr(4)] (2a,b) occurred or the Ni-In bound systems (eta(5)-C(5)H(5))(PPh(3))Ni-InBr(2)(OPPh(3)) (3a) and [(eta(5)-C(5)H(5))(PPh(3))Ni](2)InBr (4) were obtained in good yields. The new compounds were characterized by elemental analysis, NMR, and mass spectrometry. A short Ni-In bond of 244.65(9) pm was found for 3a. Single crystal data for (eta(5)-C(5)H(5))(PPh(3))Ni-InBr(2)(OPPh(3)).THF (3a): triclinic, P1 with a = 1124.9(3), b = 1353.2(4), c = 1476.4(4) pm, alpha = 94.74(2) degrees, beta = 101.78(2) degrees, gamma = 109.64(1) degrees, V = 2044(1) x 10(6) pm(3), Z = 2, R = 0.053 (R(w) = 0.063).  相似文献   

14.
The synthesis of perfluoroalkyl-substituted "pincer"-type PCP ligands, 1,3-C6H4(CH2P(Rf)2)2 (Rf = CF3, C2F5), and platinum coordination studies (Rf = CF3) are reported. 1,3-C6H4(CH2P(CF3)2)2 (CF3PCPH) reacts at ambient temperatures with (cod)Pt(Me)Cl (cod = 1,5-cyclooctadiene) and (cod)PtMe2 to afford unmetalated PCPH-bridged products [(CF3PCPH)Pt(Me)Cl]x and cis-[(CF3PCPH)PtMe2]2, respectively. cis-[(CF3PCPH)PtMe2]2 is soluble and has been spectroscopically and crystallographically characterized. Thermolysis of these compounds results in the loss of methane and the formation of metalated complexes (CF3PCP)PtCl and (CF3PCP)PtMe. Treatment of (CF3PCP)PtCl with MeMgBr provides an alternative route to (CF3PCP)PtMe. The carbonyl cation (CF3PCP)Pt(CO)+SbF6- (nu(CO) = 2143 cm(-1)) was readily prepared by chloride abstraction with AgSbF6 under 1 atm CO. nu(CO) data indicates that RfPCP ligands are electronically analogous to trans acceptor phosphine complexes such as trans-((C2F5)2PMe)2Pt(Me)(CO)+ (nu(CO) = 2149 cm-1).  相似文献   

15.
A series of [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes containing the cyclic diphosphine ligands [P(R)(2)N(Ph)(2) = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)] have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(P(Bn)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) and [Ni(P(n-Bu)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(P(Bn)(2)N(Ph)(2))(2)] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(P(Cy)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2), all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H(2) in acidic acetonitrile solutions. The heterolytic cleavage of H(2) by [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(P(R)(2)N(Ph)(2))(2)](BF(4)) complexes. However, for the catalysts with the most bulky R groups, the turnover frequencies do not parallel the driving force for elimination of H(2), suggesting that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate.  相似文献   

16.
The synthesis and the crystal and molecular structure of N(CH(2)CH(2)NMe)(3)P=CH(2) is reported. The P-N(ax) distance is rather long in N(CH(2)CH(2)NMe)(3)P=CH(2). The ylide N(CH(2)CH(2)NMe)(3)P=CH(2) proved to be a stronger proton acceptor than proazaphosphatrane N(CH(2)CH(2)NMe)(3)P, since it was shown to deprotonate N(CH(2)CH(2)NMe)(3)PH(+). The extremely strong basicity of the ylide is in accordance with its low ionization energy (6.3 eV), which is the lowest in the presently investigated series N(CH(2)CH(2)NMe)(3)P=E (E: CH(2), NH, lone pair, O and S), and to the best of our knowledge it is the smallest value observed for a non-conjugated phosphorus ylide. Computations reveal the existence of two bond strech isomers, and the stabilization of the phosphorus centered cation by electron donation from the equatorial and the axial nitrogens. Similar stabilizing effects operate in the case of protonation of E. A fine balance of these different interactions determines the P-N(ax) distance, which is thus very sensitive to the level of the theory applied. According to the quantum mechanical calculations, methyl substitution at the equatorial nitrogens flattens the pyramidality of this atom, increasing its electron donor capability. As a consequence, the PN(ax) distance in the short-transannular bonded protonated systems and the radical cations is longer by about 0.5 A in the N(eq)(Me) than in the N(eq)(H) systems. Accordingly, isodesmic reaction energies show that a stabilization of about 25 and 10 kcal/mol is attributable to the formation of the transannular bond in case of N(eq)(H) and the experimentally realizable N(eq)(Me) species, respectively.  相似文献   

17.
The reaction for CH3CH2+O(3P) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single-point calculations for all the stationary points were carried out at the QCISD(T)/6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2O+CH3, CH3CHO+H and CH2CH2+OH in the reaction. For the products CH2O+CH3 and CH3CHO+H, the major production channels are A1: (R)→IM1→TS3→(A) and B1: (R)→IM1→TS4→(B), respectively. The majority of the products CH2CH2+OH are formed via the direct abstraction channels C1 and C2: (R)→TS1(TS2)→(C). In addition, the results suggest that the barrier heights to form the CO reaction channels are very high, so the CO is not a major product in the reaction.  相似文献   

18.
(Hydroxymethyl)phosphorus compounds are well-known and valuable compounds in general; however the use of (hydroxymethyl)phosphinates R(1)P(O)(OR(2))CH(2)OH in particular has been much more limited. The potential of this functionality has not yet been fully realized because the mild unmasking of the hydroxymethyl group was not available. The mild oxidative conversion of R(1)P(O)(OR(2))CH(2)OH into R(1)P(O)(OR(2))H using the Corey-Kim oxidation is described. Other reactions preserving the methylene carbon are also reported.  相似文献   

19.
Bicyclic P(CH2NMe)3P was synthesized, and its reactions with MnO2, elemental sulfur, p-toluenesulfonyl azide, BH3.THF, and W(CO)5(THF) were shown to furnish a variety of products in which the PC3 and/or the PN3 phosphorus are oxidized/coordinated. In contrast, reactions of the previously known P(CH2NPh)3P with Mo(0) and Ru(II) precursors were shown to afford products in which only the PC3 phosphorus is coordinated. The contrast in reactivity of P(CH2NR)3P (R = Me, Ph) with the aforementioned reagents is discussed in terms of steric and electronic factors. The new compounds are characterized by analytical and spectroscopic (IR, 1H, 31P, and 13C NMR) methods. The results of crystal and molecular structure X-ray analyses of the previously known compounds P(CH2O)3P and P(CH2NPh)3P and 6 of the 14 new compounds obtained in this investigation are presented. Salient features of these structures and the analysis of the Tolman cone angles calculated from their structural parameters are discussed in terms of the effects of constraint in the bicyclic moieties. Evidence is presented for greater M-P sigma bonding effects on coordination of the PC3 phosphorus of P(CH2NR)3P (R = Me, Ph) than are present in PMe3 analogues of group 6B metal carbonyls. From 1JBP data on the BH3 adducts of P(CH2NMe)3P, it is suggested that the free bases MeC(CH2NMe)3P < P(CH2NMe)3P < (Me2N)3P < P(MeNCH2CH2)3N increase in Lewis basicity at the PN3 phosphorus in the order shown. Substantial differences in 31P chemical shifts in the bicyclic compounds discussed herein relative to their acyclic analogues do not seem to be associated with the relatively small bond angle changes that occur around either the PN3 or the PC3 trivalent phosphorus atoms.  相似文献   

20.
The boron-atom insertion reaction of nido-9,11-I(2)-7,8-C(2)B(9)H(9)(2-), with the HBCl(2):SMe(2) complex yields closo-4,7-I(2)-1,2-C(2)B(10)H(10), 1, in excellent yield. Although the two boron atoms (B3 and B6) nearest to the carbon atoms in 1 are equally available for attack by nucleophiles, the boron-degradation reaction of 1 with alkoxide ion occurs only at the B6 vertex, yielding regioselectively [(CH(3))(3)NH][nido-2,4-I(2)-7,8-C(2)B(9)H(10)], 2. The molecular structures of 1 and 2 have been determined by X-ray diffraction studies. Crystallographic data are as follows. For 1, monoclinic, space group P2(1)/n, a = 6.9199(19) Angstroms, b = 23.9560(7) Angstroms, c = 7.2870(2) Angstroms, beta = 94.081(4) degrees, V = 1204.9(6) Angstroms(3), Z = 4, rho(calcd) = 2.18 g cm(-3), R = 0.020, R(w) = 0.0610; for 2, orthorhombic, space group Pca2(1), a = 14.1141(7) Angstroms, b = 7.0276(4) Angstroms, c = 16.4602(9) Angstroms, V = 1632.7(15) Angstroms(3), Z = 4, rho(calcd) = 1.81 gcm(-3), R = 0.022, R(w) = 0.0623.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号