首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hyperfine structure in the microwave spectra of 1,2,3-triazole and N-deutero 1,2,3-triazole has been analyzed. The coupling constants derived from the analysis of each isotopic species have been combined to give the principal nuclear quadrupole coupling constants at the sites of the three inequivalent 14N nuclei.  相似文献   

2.
Using two molecular jet Fourier transform microwave spectrometers, the rotational spectrum of 2-methylpyrrole was recorded in the frequency range from 2 to 40?GHz. From the torsional splittings due to the internal rotation of the methyl group a barrier height of 279.7183(26) cm?1 was deduced. Because of the 14N nucleus, all lines show a quadrupole hyperfine structure. The microwave spectra were analysed using the XIAM and BELGI-Cs-hyperfine codes. The XIAM code enabled us to reproduce the whole data set with a root-mean-square deviation of 5.6 kHz while the BELGI-Cs-hyperfine code could provide a better root-mean-square almost by a factor of 2 compared to that of XIAM. The experimental results were complemented by quantum chemical calculations. The values of the methyl torsional barrier and the 14N nuclear quadrupole coupling constants are discussed and compared with other methyl substituted pyrroles as well as other aromatic five-membered rings.  相似文献   

3.
Four conformers of tryptamine have been detected in a supersonic expansion and characterized by laser ablation molecular beam Fourier transform microwave spectroscopy LA-MB-FTMW in the 5–10 GHz frequency range. The quadrupole hyperfine structure originated by two 14N nuclei has been completely resolved for all conformers and used for their unambiguous identification. Nuclear quadrupole coupling constants of the nitrogen atom of the side chain have been used to determine the orientation of the amino group involved in N–H?π interactions: to the π electronic system of the pyrrole unit in the Gauche-Pyrrole conformers (GPy) or to the phenyl unit in the Gauche-Phenyl ones.  相似文献   

4.
The rotational spectrum of tricarbonyl(methylcyclopentadienyl) manganese has been recorded in the range from 1–23 GHz using an FTMW spectrometer working on a molecular beam. This spectrum is assigned for the first time, yielding the rotational constants of the molecule and quartic centrifugal distortion constants. The fine structure due to the quadrupole interaction of the 55Mn nucleus could be solved and gave the quadrupole coupling tensor (which is compared with that of tricarbonyl(cyclopentadienyl)manganese, and the spin-rotation constants. An additional splitting of a few kHz, which could be observed for some transitions, is interpreted as arising from the internal rotation of the methyl group.  相似文献   

5.
The microwave spectrum of 121-SbC5H5, 123-SbC5H5, β-dideutero 121-SbC5H3D2 and 123-SbC5H3D2 has been assigned in the region 26.5–40.0 GHz. The respective rotational constants and uncertainties are: A = 4512.69 ± 0.42, B = 1738.00 ± 0.01, C = 1254.51 ± 0.01; A = 4512.84 ± 0.30, B = 1729.80 ± 0.01, C = 1250.22 ± 0.01; A = 4176.18 ± 0.33, B = 1660.94 ± 0.01, C = 1188.15 ± 0.01; A = 4176.60 ± 0.61, B = 1652.94 ± 0.03, C = 1184.03 ± 0.03 (in MHz units). The structure is found to be planar, C2v in symmetry. The d(Sb-C) = 2.050 ± 0.005 A? and ∠CSbC = 92.9° ± 1.0°. The nuclear quadrupole coupling constants for the 121 and 123 antimony isotopes are χaa = 456.4 ± 4.1 MHz, η = 0.396 ± 0.008, and χaa = 583.00 ± 5.3 MHz, η = 0.399 ± 0.008, respectively. Several alternate techniques using the coupling constants as data support a σ-donating property for antimony.  相似文献   

6.
The microwave spectrum of isopropyliodide was studied in the 18.0 to 26.5 GHz region. From observed a-type R-transitions, the rotational constants A, B, C and the quadrupole coupling constants χaa, χbb, χcc, and χac were determined using diagonalization of the complete Hamiltonian matrix including all quadrupole operator matrix elements. The results are consistent with those of the homologous series (CH3)nCH3?nI, n = 0, 1, 2, 3.  相似文献   

7.
The microwave spectra of three further isotopic species of chlorine isocyanate (35Cl15N12C16O, 37Cl15N12C16O, 35Cl14N13C16O) have been measured. From them we have obtained rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants. The data are combined with earlier data (1) to confirm the planarity of the molecule, and to give a full substitution structure as follows: r (ClN) = 1.705 ± 0.005 A?; r (NC) = 1.226 ± 0.005 A?; r(CO) = 1.162 ± 0.005 A?; < (ClNC) = 118°50′ ± 30′; < (NCO) = 170°52′ ± 30′, with Cl and O trans. We have also calculated the chlorine and nitrogen quadrupole coupling constants using the SCF-MO-CNDO method, and have obtained good agreement with the measured values. Evidence for in-plane π-bonding at nitrogen has been obtained.  相似文献   

8.
The splittings due to the three chlorine quadrupoles, observed in the millimeter-wave rotational spectra of Si35Cl3H in the ground and ν6 = 1 excited vibrational states, have been analyzed and the quadrupole parameters determined. In particular, splittings observed for the kl − 1 = −1 lines in ν6 = 1 are explained in terms of the asymmetry parameter ηQ. The value obtained is consistent with the electric field gradient at the 35Cl nuclei having cylindrical symmetry about the SiCl bond.  相似文献   

9.
A chirped pulse microwave spectrometer has been used to record microwave spectra of the 35Cl and 37Cl isotopologues of methyl chlorodifluoroacetate, CClF2C(O)OCH3, between 8 GHz and 16 GHz. The target compound was spectroscopically examined as it participated in a supersonic expansion of argon. Only one conformer was observed. The rotational spectra were recorded with sufficient resolution to observe (i) splittings due to the internal rotation of the methyl group, and (ii) splittings from the coupling of the chlorine quadrupolar nucleus. A total of 785 transitions have had quantum numbers assigned. Analysis of the spectra observed has produced an experimental barrier to the methyl group internal rotation, V3, of 370(2) cm−1. It is noted that this barrier is a little lower than that determined for methyl acetate [V3 = 425 cm−1, J. Sheridan, W. Bossert and A. Bauder, J. Mol. Spectrosc., 80 (1980) 1-11], and this is rationalized through a comparison of molecular structures. Lastly, all components of both the 35Cl and 37Cl chlorine nuclear electric quadrupolar coupling tensor have been determined.  相似文献   

10.
The microwave spectrum of 35Cl and 37Cl species of chloroiodomethane was investigated in the frequency region of 9–35 GHz. The b-type R-branch and Q-branch transitions were assigned. The rotational constants of the ground state were determined to be A = 27 418.81 ± 0.10, B = 1621.879 ± 0.024, and C = 1545.730 ± 0.044 MHz for the 35Cl species; and A = 27 261.46 ± 0.16, B = 1562.240 ± 0.047, and C = 1491.008 ± 0.092 MHz for the 37Cl species. From the hyperfine splitting of the I, 35Cl, and 37Cl nuclei, the nuclear quadrupole coupling constants were determined to be χaa = −1404.5 ± 3.8, χbb = 383.4 ± 2.1, χcc = 1021.1 ± 4.3, and ∥χab∥ = 1176.5 ± 3.6 MHz of iodine; χaa = −26.8 ± 2.3, χbb = −11.0 ± 1.2, and χcc = 37.8 ± 2.6 MHz of 35Cl for the 35Cl species; χaa = −1423.2 ± 5.5, χbb = 389.1 ± 2.9, χcc = 1034.1 ± 6.2, and ∥χab∥ = 1170.2 ± 6.9 MHz of iodine; and χaa = −20.4 ± 3.3, χbb = −9.1 ± 1.8, and χcc = 29.5 ± 3.7 MHz of 37Cl for the 37Cl species, respectively. The centrifugal distortion constants were also determined using all of the assigned transitions. A brief discussion of the procedure for analyzing the quadrupole hyperfine structures of a molecule containing two quadrupolar nuclei is also provided.  相似文献   

11.
12.
The complex hyperfine structures in the J = 1 ← 0, and J = 2 ← 1 ground state rotational transitions of 35Cl3CH and 35Cl237ClCH were resolved and measured at conditions of supersonic expansion. Accurate spectroscopic constants for the two isotopomers have been derived from global fits of the hyperfine structure together with hyperfine-free high-J millimetre wave data. The complete inertial and principal quadrupole tensors of the chlorine nuclei have been determined, and the symmetric top treatment for 35Cl3CH and the asymmetric top treatment for 35Cl237ClCH yield identical results for the principal tensor components of the 35Cl nucleus. The availability of precise experimental splitting constants for many molecules allows benchmarking of ab initio field gradient calculations, and it is found that for the chlorine nucleus optimum predictive performance for molecules of moderate size is obtained at the B3LYP/aug-cc-pVDZ level by using a scaling factor of 1.0619(23).  相似文献   

13.
The microwave spectrum of methacrylonitrile has been assigned and frequencies are listed in the 8–40 GHz frequency region for the assigned transitions. The rotational constants are A = 9297.48 ± 0.30, B = 4166.33 ± 0.01, and C = 2924.68 ± 0.01 all in units of MHz. The barrier to internal rotation of the methyl group is V3 = 2030 ± 60 cal/mole. The 14N nuclear quadrupole coupling constants are χaa = −4.18 ± 0.04 and χbb = 2.03 ± 0.15 in units of MHz.  相似文献   

14.
15.
16.
The microwave spectrum of boron chloride difluoride, BClF2, has been investigated in the region 26.5–40.0 GHz. R-branch transitions belonging to the isotopic species 11B35Cl19F2, 11B37Cl19F2, and 10B35Cl19F2 have been observed and the derived rotational constants yield the following ground-state structural parameters: r0(BF) = 1.315 ± 0.006 A?, rs(BCl) = 1.728 ± 0.009 A?, < FBF = 118.1 ± 0.5°. The ground-state rotational constants of the most abundant species 11B35Cl19F2 are: A0 = 10 449.32 ± 0.13, B0 = 4705.811 ± 0.020, C0 = 3239.702 ± 0.026 MHz, ΔJK = 8.9 ± 1.7, and ΔJ = 1.86 ± 0.48 KHz. The asymmetry parameter κ = ?0.593291 and the inertial defect δ0 = 0.2361 amu Å2 which is consistent with that expected for this type of molecule if planar. The 35Cl quadrupole coupling constants for 11B35Cl19F2 are χaa = ?42.8 ± 1.0, χbb = 30.2 ± 1.5, χcc = 12.6 ± 1.5 MHz with the asymmetry parameter η = 0.41.  相似文献   

17.
The microwave spectra of three isotopic species of dichlorosilane, SiH2Cl2, in its ground vibrational state, have been measured in the frequency region 8–40 GHz. The spectra have yielded values for the rotational constants, centrifugal distortion constants, and chlorine nuclear quadrupole coupling constants, as well as the molecular dipole moment, 1.13 ± 0.02 D. The molecule has C2v symmetry, and the bond lengths and angles r(Si---Cl=2.033±Å, r(Si---H)=1.480±0.015Å, (Cl---Si---Cl)=109°43′±20±, (H---Si---H)=111°18′±40′ The centrifugal distortion constants have been compared with those calculated using a published force field.  相似文献   

18.
The microwave spectra of the normal and two isotopic species of cyclopentyl chloride have been observed and analyzed. For the normal isotopic species the rotational constants (in MHz) are A = 4547.77 ± 0.01, B = 2290.22 ± 0.01, and C = 2073.34 ± 0.01. From the rotational constant data, it has been shown that the stable molecular conformation is the bent axial form. Quadrupole coupling constants have been measured for the 35Cl nucleus, the values being (in MHz) χaa = ?23.70 ± 0.10, χbb = 32.33 ± 0.36, and χcc = ?8.63 ± 0.37. When transformed to the CCl bond axis system, the coupling constants confirm the axial structure. Extensive vibrational satellite structure, presumably arising from the pseudorotational ring mode with a fundamental frequency of 52 ± 5 cm?1, has been observed and assigned. No spectral evidence has been observed for a second stable molecular conformer.  相似文献   

19.
The microwave spectrum of 1-cyanocyclohexene has been investigated in the frequency regions 8–12.4 and 18–26.5 GHz. A-Type transitions in the ground state and three excited states have been assigned. The rotational constants in the ground state were determined to be A = 4565.98 ± 0.46, B = 1423.44 ± 0.01, and C = 1136.17 ± 0.01 MHz. From the experimental data, it was suggested that the molecule has an equilibrium half-chair conformation similar to those of cyclohexene and 1-fluorocyclohexene. From the hyperfine splittings of the 14N nucleus, the quadrupole coupling constant, Xaa, was found to be 4.2 MHz.  相似文献   

20.
The molecular rotational spectrum of 1-iodopropane (n-propyl iodide) has been investigated in the frequency region 9–33 GHz. The 1-iodopropane molecule has been confirmed to exist in two rotational isomers, trans and gauche. The rotational constants of the ground state were determined to be A = 10 595.450(60) MHz, B = 1781.669(8) MHz, and C = 1614.200(7) MHz for gauche, and B = 1305.247(8) MHz and C = 1269.365(7) MHz for trans. The nuclear quadrupole coupling constants were determined to be χaa = −1020(3) MHz, χbb = 193(2) MHz, χcc = 827(4) MHz, χab = 1173(2) MHz, χac = −369(7) MHz, and χbc = 230(5) MHz for gauche, and χaa = −1509(8) MHz, χbb = 610(9) MHz, χcc = 899(12) MHz, and χab = −789(9) MHz for trans. The centrifugal distortion constants were also determined using all of the assigned transitions. From the relative intensity measurements the skeletal torsional frequencies for the gauche and trans forms were estimated to be 117 and 108 cm−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号