首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper we present an algorithm for solving nonlinear programming problems where the objective function contains a possibly nonsmooth convex term. The algorithm successively solves direction finding subproblems which are quadratic programming problems constructed by exploiting the special feature of the objective function. An exact penalty function is used to determine a step-size, once a search direction thus obtained is judged to yield a sufficient reduction in the penalty function value. The penalty parameter is adjusted to a suitable value automatically. Under appropriate assumptions, the algorithm is shown to produce an approximate optimal solution to the problem with any desirable accuracy in a finite number of iterations.  相似文献   

2.
The aim of this paper is to suggest branch and bound schemes, based on a relaxation of the objective function, to solve nonconvex quadratic programs over a compact polyhedral feasible region. The various schemes are based on different d.c. decomposition methods applied to the quadratic objective function. To improve the tightness of the relaxations, we also suggest solving the relaxed problems with an algorithm based on the so called “optimal level solutions” parametrical approach. *This paper has been partially supported by M.I.U.R. and C.N.R.  相似文献   

3.
In this paper, we consider two algorithms for nonlinear equality and inequality constrained optimization. Both algorithms utilize stepsize strategies based on differentiable penalty functions and quadratic programming subproblems. The essential difference between the algorithms is in the stepsize strategies used. The objective function in the quadratic subproblem includes a linear term that is dependent on the penalty functions. The quadratic objective function utilizes an approximate Hessian of the Lagrangian augmented by the penalty functions. In this approximation, it is possible to ignore the second-derivative terms arising from the constraints in the penalty functions.The penalty parameter is determined using a strategy, slightly different for each algorithm, that ensures boundedness as well as a descent property. In particular, the boundedness follows as the strategy is always satisfied for finite values of the parameter.These properties are utilized to establish global convergence and the condition under which unit stepsizes are achieved. There is also a compatibility between the quadratic objective function and the stepsize strategy to ensure the consistency of the properties for unit steps and subsequent convergence rates.This research was funded by SERC and ESRC research contracts. The author is grateful to Professors Laurence Dixon and David Mayne for their comments. The numerical results in the paper were obtained using a program written by Mr. Robin Becker.  相似文献   

4.
In this paper we define second order C-differentiable functions and second order C-differential operators, describe their some properties and propose an inexact generalized Newton method to solve unconstrained optimization problems in which the objective function is not twice differentiable, but second order C-differentiable. We prove that the algorithm is linearly convergent or superlinearly convergent including the case of quadratic convergence depending on various conditions on the objective function and different values for the control parameter in the algorithm.  相似文献   

5.
A new globally convergent algorithm for minimizing an objective function subject to equality and inequality constraints is presented. The algorithm determines a search direction by first solving a linear program and using the information gained thereby to define a quadratic approximation, with a guaranteed solution, to the original problem; the solution of the quadratic problem is the desired search direction. The algorithm incorporates a new method for choosing the penalty parameter. Numerical results illustrate the performance of the algorithm.The author wishes to thank Professor D. Q. Mayne and Dr. F. A. Pantoja for critically reviewing the first draft of this paper, for their suggestions, criticism, and contributions to some of the proofs. Support of the UK Science Research and Engineering Council is gratefully acknowledged.  相似文献   

6.
Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in solving problems where the number of variables is so huge that basic operations, such as the evaluation of the objective function or the updating of its gradient, are very time consuming. Thus, for the considered class of problems (including dense quadratic programs), traditional optimization methods cannot be applied directly. In this paper, we define a decomposition algorithm model which employs, at each iteration, a descent search direction selected among a suitable set of sparse feasible directions. The algorithm is characterized by an acceptance rule of the updated point which on the one hand permits to choose the variables to be modified with a certain degree of freedom and on the other hand does not require the exact solution of any subproblem. The global convergence of the algorithm model is proved by assuming that the objective function is continuously differentiable and that the points of the level set have at least one component strictly between the lower and upper bounds. Numerical results on large-scale quadratic problems arising in the training of support vector machines show the effectiveness of an implemented decomposition scheme derived from the general algorithm model.  相似文献   

7.
Exact penalty function algorithm with simple updating of the penalty parameter   总被引:13,自引:0,他引:13  
A new globally convergent algorithm for minimizing an objective function subject to equality and inequality constraints is presented. The algorithm determines a search direction by solving a quadratic programming subproblem, which always has an optimal solution, and uses an exact penalty function to compute the steplength along this direction through an Armijo-type scheme. The special structure of the quadratic subproblem is exploited to construct a new and simple method for updating the penalty parameter. This method may increase or reduce the value of the penalty parameter depending on some easily performed tests. A new method for updating the Hessian of the Lagrangian is presented, and a Q-superlinear rate of convergence is established.This work was supported in part by the British Council and the Conselho Nacional de Desenvolvimento Cientifico & Tecnologico/CNPq, Rio de Janeiro, Brazil.The authors are very grateful to Mr. Lam Yeung for his invaluable assistance in computing the results and to a reviewer for constructive advice.  相似文献   

8.
This paper presents a primal-dual interior-point algorithm for solving general constrained nonlinear programming problems. The inequality constraints are incorporated into the objective function by means of a logarithmic barrier function. Also, satisfaction of the equality constraints is enforced through the use of an adaptive quadratic penalty function. The penalty parameter is determined using a strategy that ensures a descent property for a merit function. Global convergence of the algorithm is achieved through the monotonic decrease of a merit function. Finally, extensive computational results show that the algorithm can solve large and difficult problems in an efficient and robust way.Communicated by L. C. W. DixonThe research reported in this paper was done while the first author was at Imperial College. The authors gratefully acknowledge constructive comments from Professor L. C. W. Dixon and an anonymous referee. They are also grateful to Dr. Stanislav Zakovic for helpful suggestions and comments. Financial support was provided by EPSRC Grants M16016 and GR/G51377/01.  相似文献   

9.
There are well established rival theories about the economy. These have, in turn, led to the development of rival models purporting to represent the economic system. The models are large systems of discrete-time nonlinear dynamic equations. Observed data of the real system does not, in general, provide sufficient information for statistical methods to invalidate all but one of the rival models. In such a circumstance, there is uncertainty about which model to use in the formulation of policy. Prudent policy design would suggest that a model-based policy should take into account all the rival models. This is achieved as a pooling of the models. The pooling that yields the policy which is robust to model choice is formulated as a constrained min-max problem. The minimization is over the decision variables and the maximization is over the rival models. Only equality constraints are considered.A successive quadratic programming algorithm is discussed for the solution of the min-max problem. The algorithm uses a stepsize strategy based on a differentiable penalty function for the constraints. Two alternative quadratic subproblems can be used. One is a quadratic min-max and the other a quadratic programming problem. The objective function of either subproblem includes a linear term which is dependent on the penalty function. The penalty parameter is determined at every iteration, using a strategy that ensures a descent property as well as the boundedness of the penalty term. The boundedness follows since the strategy is always satisfied for finite values of the parameter which needs to be increased a finite number of times.The global and local convergence of the algorithm is established. The conditions, involving projected Hessian approximations, are discussed under which the algorithm achieves unit stepsizes and subsequently Q-superlinear convergence.  相似文献   

10.
The aim of this paper is to find the global solutions of uncertain optimization problems having a quadratic objective function and quadratic inequality constraints. The bounded epistemic uncertainties in the constraint coefficients are represented using either universal or existential quantified parameters and interval parameter domains. This approach allows to model non-controlled uncertainties by using universally quantified parameters and controlled uncertainties by using existentially quantified ones. While existentially quantified parameters could be equivalently considered as additional variables, keeping them as parameters allows maintaining the quadratic problem structure, which is essential for the proposed algorithm. The branch and bound algorithm presented in the paper handles both universally and existentially quantified parameters in a homogeneous way, without branching on their domains, and uses some dedicated numerical constraint programming techniques for finding a robust, global solution. Several examples clarify the theoretical parts and the tests demonstrate the usefulness of the proposed method.  相似文献   

11.
A working set SQCQP algorithm with simple nonmonotone penalty parameters   总被引:1,自引:0,他引:1  
In this paper, we present a new sequential quadratically constrained quadratic programming (SQCQP) algorithm, in which a simple updating strategy of the penalty parameter is adopted. This strategy generates nonmonotone penalty parameters at early iterations and only uses the multiplier corresponding to the bound constraint of the quadratically constrained quadratic programming (QCQP) subproblem instead of the multipliers of the quadratic constraints, which will bring some numerical advantages. Furthermore, by using the working set technique, we remove the constraints of the QCQP subproblem that are locally irrelevant, and thus the computational cost could be reduced. Without assuming the convexity of the objective function or the constraints, the algorithm is proved to be globally, superlinearly and quadratically convergent. Preliminary numerical results show that the proposed algorithm is very promising when compared with the tested SQP algorithms.  相似文献   

12.
In this paper, we present a new sequential quadratically constrained quadratic programming (SQCQP) algorithm, in which a simple updating strategy of the penalty parameter is adopted. This strategy generates nonmonotone penalty parameters at early iterations and only uses the multiplier corresponding to the bound constraint of the quadratically constrained quadratic programming (QCQP) subproblem instead of the multipliers of the quadratic constraints, which will bring some numerical advantages. Furthermore, by using the working set technique, we remove the constraints of the QCQP subproblem that are locally irrelevant, and thus the computational cost could be reduced. Without assuming the convexity of the objective function or the constraints, the algorithm is proved to be globally, superlinearly and quadratically convergent. Preliminary numerical results show that the proposed algorithm is very promising when compared with the tested SQP algorithms.  相似文献   

13.
王福胜  张瑞 《计算数学》2018,40(1):49-62
针对带不等式约束的极大极小问题,借鉴一般约束优化问题的模松弛强次可行SQP算法思想,提出了求解不等式约束极大极小问题的一个新型模松弛强次可行SQCQP算法.首先,通过在QCQP子问题中选取合适的罚函数,保证了算法的可行性以及目标函数F(x)的下降性,同时简化QCQP子问题二次约束项参数α_k的选取,可保证算法的可行性和收敛性.其次,算法步长的选取合理简单.最后,在适当的假设条件下证明了算法具有全局收敛性及强收敛性.初步的数值试验结果表明算法是可行有效的.  相似文献   

14.
The present paper develops an algorithm for ranking the integer feasible solutions of a quadratic integer programming (QIP) problem. A linear integer programming (LIP) problem is constructed which provides bounds on the values of the objective function of the quadratic problem. The integer feasible solutions of this related integer linear programming problem are systematically scanned to rank the integer feasible solutions of the quadratic problem in non-decreasing order of the objective function values. The ranking in the QIP problem is useful in solving a nonlinear integer programming problem in which some other complicated nonlinear restrictions are imposed which cannot be included in the simple linear constraints of QIP, the objective function being still quadratic.  相似文献   

15.
In this paper, we present a nonmonotone algorithm for solving nonsmooth composite optimization problems. The objective function of these problems is composited by a nonsmooth convex function and a differentiable function. The method generates the search directions by solving quadratic programming successively, and makes use of the nonmonotone line search instead of the usual Armijo-type line search. Global convergence is proved under standard assumptions. Numerical results are given.  相似文献   

16.
一类改进BFGS算法及其收敛性分析   总被引:6,自引:0,他引:6  
本文针对无约束最优化问题,基于目标函数的局部二次模型近似,提出一类改进的BFGS算法,称为 MBFGS算法。其修正 B_k的公式中含有一个参数θ∈[0,l],当 θ= 1时即得经典的BFGS公式;当θ∈[0、l)时,所得公式已不属于拟Newton类。在目标函数一致凸假设下,证明了所给算法的全局收敛性及局部超线性收敛性。  相似文献   

17.
对一般凸目标函数和一般凸集约束的凸规划问题新解法进行探讨,它是线性规划一种新算法的扩展和改进,此算法的基本思想是在规划问题的可行域中由所建-的一个切割面到另一个切割面的不断推进来求取最优的。文章对目标函数是二次的且约束是一般凸集和二次目标函数且约束是线性的情形,给出了更简单的算法。  相似文献   

18.
In this paper, we propose a branch-and-bound algorithm for finding a global optimal solution for a nonconvex quadratic program with convex quadratic constraints (NQPCQC). We first reformulate NQPCQC by adding some nonconvex quadratic constraints induced by eigenvectors of negative eigenvalues associated with the nonconvex quadratic objective function to Shor’s semidefinite relaxation. Under the assumption of having a bounded feasible domain, these nonconvex quadratic constraints can be further relaxed into linear ones to form a special semidefinite programming relaxation. Then an efficient branch-and-bound algorithm branching along the eigendirections of negative eigenvalues is designed. The theoretic convergence property and the worst-case complexity of the proposed algorithm are proved. Numerical experiments are conducted on several types of quadratic programs to show the efficiency of the proposed method.  相似文献   

19.
提出了一个求解非线性半定规划的无罚函数无滤子序列二次半定规划(SSDP)算法. 算法每次迭代只需求解一个二次半定规划子问题确定搜索方向; 非单调线搜索保证目标函数或约束违反度函数的充分下降, 从而产生新的迭代点. 在适当的假设条件下, 证明了算法的全局收敛性. 最后给出了初步的数值实验结果.  相似文献   

20.
This paper presents an improved lower bound and an approximation algorithm based on spectral decomposition for the binary constrained quadratic programming problem. To decompose spectrally the quadratic matrix in the objective function, we construct a low rank problem that provides a lower bound. Then an approximation algorithm for the binary quadratic programming problem together with a worst case performance analysis for the algorithm is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号