首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Deletion or mutation(s) of the survival motor neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA), a neuromuscular disease characterized by spinal motor neuron death and muscle paralysis. Complete loss of the SMN protein is embryonically lethal, yet reduced levels of this protein result in selective death of motor neurons. Why motor neurons are specifically targeted by SMN deficiency remains to be determined. In this study, embryonic stem (ES) cells derived from a severe SMA mouse model were differentiated into motor neurons in vitro by addition of retinoic acid and sonic hedgehog agonist. Proteomic and western blot analyses were used to probe protein expression alterations in this cell-culture model of SMA that could be relevant to the disease.  相似文献   

2.

Background  

Programmed cell death of motoneurons in the developing spinal cord is thought to be regulated through the availability of target-derived neurotrophic factors. When deprived of trophic support, embryonic spinal motoneurons in vitro over-express FasL, a ligand activating a Fas-mediated death pathway. How trophic factors regulate the expression of FasL is presently unclear, but two regulators of FasL, FOXO3a (FKHRL1) and JNK have been described to play a role in other cell types. Thus, their potential function in motoneurons was investigated in this study.  相似文献   

3.

Background  

Chemical methods of transfection that have proven successful with cell lines often do not work with primary cultures of neurons. Recent data, however, suggest that linear polymers of the cation polyethyleneimine (PEI) can facilitate the uptake of nucleic acids by neurons. Consequently, we examined the ability of a commercial PEI preparation to allow the introduction of foreign genes into postmitotic mammalian neurons. Sympathetic neurons were obtained from perinatal rat pups and maintained for 5 days in vitro in the absence of nonneuronal cells. Cultures were then transfected with varying amounts of a plasmid encoding either E. coli β-galactosidase or enhanced green fluorescence protein (EGFP) using PEI.  相似文献   

4.

Background  

Genetically manipulated embryonic stem (ES) cell derived neurons (ESNs) provide a powerful system with which to study the consequences of gene manipulation in mature, synaptically connected neurons in vitro. Here we report a study of focal adhesion kinase (FAK), which has been implicated in synapse formation and regulation of ion channels, using the ESN system to circumvent the embryonic lethality of homozygous FAK mutant mice.  相似文献   

5.

Background  

In order to optimize the potential benefits of neural stem cell (NSC) transplantation for the treatment of neurodegenerative disorders, it is necessary to understand their biological characteristics. Although neurotrophin transduction strategies are promising, alternative approaches such as the modulation of intrinsic neurotrophin expression by NSCs, could also be beneficial. Therefore, utilizing the C17.2 neural stem cell line, we have examined the expression of selected neurotrophic factors under different in vitro conditions. In view of recent evidence suggesting a role for the pineal hormone melatonin in vertebrate development, it was also of interest to determine whether its G protein-coupled MT1 and MT2 receptors are expressed in NSCs.  相似文献   

6.

Background  

The responses of adult parasympathetic ganglion neurons to injury and the neurotrophic mechanisms underlying their axonal regeneration are poorly understood. This is especially relevant to penis-projecting parasympathetic neurons, which are vulnerable to injury during pelvic surgery such as prostatectomy. We investigated the changes in pelvic ganglia of adult male rats in the first week after unilateral cavernous (penile) nerve axotomy (cut or crush lesions). In some experiments FluoroGold was injected into the penis seven days prior to injury to allow later identification of penis-projecting neurons. Neurturin and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors for penile parasympathetic neurons, so we also examined expression of relevant receptors, GFRα1 and GFRα2, in injured pelvic ganglion neurons.  相似文献   

7.

Background  

Nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) all play important roles in the development of the peripheral sensory nervous system. Additionally, these growth factors are proposed to modulate the properties of the sensory system in the adult under pathological conditions brought about by nerve injury or inflammation. We have examined the effects of NGF, GDNF and BDNF on adult rat trigeminal ganglion (TG) neurons in culture to gain a better understanding of how these growth factors alter the cytochemical and functional phenotype of these neurons, with special attention to properties associated with nociception.  相似文献   

8.

Background  

The slow Wallerian Degeneration (Wld S ) gene specifically protects axonal and synaptic compartments of neurons from a wide variety of degeneration-inducing stimuli, including; traumatic injury, Parkinson's disease, demyelinating neuropathies, some forms of motor neuron disease and global cerebral ischemia. The Wld S gene encodes a novel Ube4b-Nmnat1 chimeric protein (WldS protein) that is responsible for conferring the neuroprotective phenotype. How the chimeric WldS protein confers neuroprotection remains controversial, but several studies have shown that expression in neurons in vivo and in vitro modifies key cellular pathways, including; NAD biosynthesis, ubiquitination, the mitochondrial proteome, cell cycle status and cell stress. Whether similar changes are induced in non-neuronal tissue and organs at a basal level in vivo remains to be determined. This may be of particular importance for the development and application of neuroprotective therapeutic strategies based around Wld S -mediated pathways designed for use in human patients.  相似文献   

9.

Background  

Neurotensin (NT) is known to act on dopamine (DA) neurons at the somatodendritic level to regulate cell firing and secondarily enhance DA release. In addition, anatomical and indirect physiological data suggest the presence of NT receptors at the terminal level. However, a clear demonstration of the mechanism of action of NT on dopaminergic axon terminals is lacking. We hypothesize that NT acts to increase DA release by inhibiting the function of terminal D2 autoreceptors. To test this hypothesis, we used fast-scan cyclic voltammetry (FCV) to monitor in real time the axonal release of DA in the nucleus accumbens (NAcc).  相似文献   

10.

Background  

Interstitial cystitis is a chronic condition associated with bladder inflammation and, like a number of other chronic pain states, symptoms associated with interstitial cystitis are more common in females and fluctuate during the menstrual cycle. The aim of this study was to determine if estrogens could directly modulate signalling pathways within bladder sensory neurons, such as extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases. These signalling pathways have been implicated in neuronal plasticity underlying development of inflammatory somatic pain but have not been as extensively investigated in visceral nociceptors. We have focused on lumbosacral dorsal root ganglion (DRG) neurons projecting to pelvic viscera (L1, L2, L6, S1) of adult female Sprague-Dawley rats and performed both in vitro and in vivo manipulations to compare the effects of short- and long-term changes in estrogen levels on MAPK expression and activation. We have also investigated if prolonged estrogen deprivation influences the effects of lower urinary tract inflammation on MAPK signalling.  相似文献   

11.

Background  

Neurons in the mammalian pretectum are involved in the control of various visual and oculomotor tasks. Because functionally independent pretectal cell populations show a wide variation of response types to visual stimulation in vivo, they may also differ in their intrinsic properties when recorded in vitro. We therefore performed whole-cell patch clamp recordings from neurons in the caudal third of the pretectal nuclear complex in frontal brain slices obtained from 3 to 6 week old hooded rats and tried to classify pretectal neurons electrophysiologically.  相似文献   

12.

Background  

Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF) activation of neurotrophin receptor tyrosine kinase B (TrkB) suppresses the Shaker voltage-gated potassium channel (Kv1.3) via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity.  相似文献   

13.

Background  

Neuron-derived neurotrophic factor (NDNF) is evolutionarily well conserved, being present in invertebrate animals such as the nematode, Caenorhabditis elegans, as well as in the fruit fly, Drosophila melanogaster. Multiple cysteines are conserved between species and secondary structure prediction shows that NDNF is mainly composed of beta-strands. In this study, we aimed to investigate the function of NDNF.  相似文献   

14.

Background  

Brain-derived neurotrophic factor (BDNF), which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP)-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP) was compared with that of nerve growth factor (NGF) tagged with yellow fluorescent protein (YFP), to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin.  相似文献   

15.

Background  

Cell-specific expression of the gene that encodes brain-derived neurotrophic factor (BDNF) is required for the normal development of peripheral sensory neurons and efficient synaptic transmission in the mature central and peripheral nervous system. The control of BDNF gene expression involves multiple tissue and cell-specific promoters that are differentially regulated. The molecular mechanisms that are responsible for tissue and cell-specific expression of these promoters are still incompletely understood.  相似文献   

16.

Background  

Chlamydophila (Chlamydia) pneumoniae is an intracellular bacterium that has been identified within cells in areas of neuropathology found in Alzheimer disease (AD), including endothelia, glia, and neurons. Depending on the cell type of the host, infection by C. pneumoniae has been shown to influence apoptotic pathways in both pro- and anti-apoptotic fashions. We have hypothesized that persistent chlamydial infection of neurons may be an important mediator of the characteristic neuropathology observed in AD brains. Chronic and/or persistent infection of neuronal cells with C. pneumoniae in the AD brain may affect apoptosis in cells containing chlamydial inclusions.  相似文献   

17.
18.

Background  

Bone marrow stromal cells and radial glia are two stem cell types with neural phenotypic plasticity. Bone marrow mesenchymal stem cells can differentiate into osteocytes, chondrocytes and adipocytes, but can also differentiate into non-mesenchymal cell, i.e. neural cells in appropriate in vivo and in vitro experimental conditions. Likewise, radial glial cells are the progenitors of many neurons in the developing cortex, but can also generate astrocytes. Both cell types express nestin, an intermediate filament protein which is the hallmark of neural precursors.  相似文献   

19.

Background  

Precise control of developmental and cell-specific expression of the brain-derived neurotrophic factor (BDNF) gene is essential for normal neuronal development and the diverse functions of BDNF in the adult organism. We previously showed that the zebrafish BDNF gene has multiple promoters. The complexity of the promoter structure and the mechanisms that mediate developmental and cell-specific expression are still incompletely understood.  相似文献   

20.

Background  

Retinal ganglion cells (RGCs) are responsible for the transmission of visual signals to the brain. Progressive death of RGCs occurs in glaucoma and several other retinal diseases, which can lead to visual impairment and blindness. Pigment epithelium-derived factor (PEDF) is a potent antiangiogenic, neurotrophic and neuroprotective protein that can protect neurons from a variety of pathologic insults. We tested the effects of PEDF on the survival of cultured adult rat RGCs in the presence of glaucoma-like insults, including cytotoxicity induced by glutamate or withdrawal of trophic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号