首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The generation of passively Q-switched mode-locking (QML) pulse has been obtained from a diode-pumped Nd:GdVO4 laser with a LT-InGaAs wafer as saturable absorber as well as output coupler. Under the incident pump power of 10 W, an average output power of QML was 1.8 W with a Q-switched repetition rate of 280 kHz. The pulse duration of Q-switched pulse is about 160 ns and mode-locked pulse within the Q-switched envelope had a repetition rate of 410 MHz. It is indicated that the present LT-InGaAs is a very promising device in the field of mode locking solid-state laser, and we are sure that it will be complete pure cw mode locking with single beam output easily after further optimizing in the parameter such as saturation fluence, modulation depth, recovery time and damage threshold in semiconductors.  相似文献   

2.
We report on a diode-pumped passively mode-locked Nd:Gd0.64Y0.36VO4 laser with a Cr4+:YAG saturable absorber. Q-switched mode locking (QML) with 90% modulation depth was obtained. The peak power of the mode-locked pulse near the maximum of the Q-switched envelope was estimated to be about 1.7 MW at the pump power of 12 W. Besides QML, continuous-wave mode locking was also experimentally realized, for the first time to our knowledge, in the laser under a strong intracavity pulse energy fluence. The mode-locked pulse width is about 2.96 ps at a repetition rate of 161.3 MHz.  相似文献   

3.
姚杰  王勇刚  李永放 《应用光学》2018,39(2):279-283
利用WS2的可饱和吸收特性,在激光二极管侧面抽运Nd:YAG固体激光器Z型腔结构中分别实现了被动调Q和被动调Q锁模运转。实验表明:当泵浦电流为9.5 A时,开始启动调Q运转,当泵浦电流大于9.8 A时,调Q激光脉冲趋于稳定。当泵浦电流为12.8 A时,被动调Q输出的最大平均功率为466 mW,最窄脉冲宽度为3.205 μs,对应的重复频率为71.70 kHz,此时最大单脉冲能量为6.5 μJ。当泵浦电流达到13.4 A时,激光器实现调Q锁模运转。调Q锁模的最高输出功率为590 mW,调Q包络频率为71.98 kHz,单个调Q包络内的脉冲串重复频率123.1 MHz,每个调Q包络中包含369个脉冲,单脉冲能量为22.2 nJ。结果表明WS2材料可以作为可饱和吸收体用于固体激光器中。  相似文献   

4.
M. Li  S. Zhao  K. Yang  G. Li  D. Li  J. An  T. Li 《Laser Physics》2009,19(5):933-938
A diode-pumped passively Q-switched and mode-locked Nd:GdVO4 laser at 1.34 μm with V3+:YAG as the saturable absorber is realized in a V-type folded cavity. About 100% modulation depth of mode locking can be obtained as long as the pump power reaches the oscillation threshold. The width of the mode-locked pulse is estimated to be less than 280 ps with 200 MHz repetition rate within an about 980 ns-long Q-switched pulse envelope. A maximum output power of 200 mW and Q-switched pulse energy of 5.7 μJ is obtained.  相似文献   

5.
By using a-cut Nd:Lu0.15Y0.85VO4 mixed crystal as laser gain medium, a diode-pumped passively Q-switched and mode-locked (QML) laser with a GaAs saturable absorber in a Z-type folded cavity is demonstrated for the first time. The Q-switched mode-locked laser pulses with about 90% modulation depth are obtained as long as the pump power reached the oscillation threshold. The repetition rate of the passively Q-switched pulse envelope ranges from 50 to 186 kHz as the pump power increases from 0.915 to 6.520 W. Under an incident pump power of 6.52 W, the QML pulses with the largest average output power of 694 mW, the shortest pulse width of 200 ns and the highest pulse energy of 3.73 μJ are obtained. The mode-locked pulse width inside the Q-switched envelope is estimated to be about 275 ps. The experimental results show that Nd:Lu0.15Y0.85VO4 is a promising mixed crystal for QML laser.  相似文献   

6.
We report a diode-pumped Nd:Gd0.64Y0.36VO4 laser passively mode locked by using a GaAs saturable absorber mirror. Both the Q-switched and continuous-wave (CW) mode locking were experimentally realized. The CW mode-locked pulses have a pulse width of about 8.8 ps at a repetition rate of 161.3 MHz. Limited by the available pump power, a maximum output power of 2.47 W was obtained for the CW mode-locked pulses with a slope efficiency of about 26.6%.  相似文献   

7.
We present the performance of diode end-pumped Nd:YVO4 laser in Q-switched and Q-switched mode-locking oscillation using a single-walled carbon nanotube based saturable absorber, which was fabricated using similar vertical evaporation technique. The average output power, repetition rate and pulse width of the Q-switched laser output were studied with different output couplers. The maximum average output power was 130 mW. For Q-switched mode-locking operation, the repetition rate of the mode-locked pulses concentrated in the Q-switched envelope was 58 MHz. The repetition rate of the Q-switched envelope maintained at 18 kHz, while the pulse width decreased along with the increasing of pump power. The maximum average output power was 53 mW.  相似文献   

8.
A diode-end-pumped simultaneously Q-switched and mode-locked intracavity frequency doubled Nd:GdVO4/LBO red laser with an acousto-optic Q-switch was realized. The maximum red laser output power of 250 mW was obtained at the incident pump power of 8.3 W and the repetition rate of 10 kHz. At 5 kHz, the maximum mode-locking modulation depth of about 80% was achieved with the Q-switched pulse width of 440 ns. The red mode-locked pulse inside the Q-switched pulse had a repetition rate of 115 MHz, its average pulse width was estimated to be about 350 ps.  相似文献   

9.
By using a composite semiconductor absorber and an output coupler, we demonstrated a Q-switched and mode-locked diode-pumped microchip Nd:YVO4 laser. With a 350-μm-thick crystal, the width of the Q-switched envelope was as short as 12 ns; the repetition rate of the mode-locked pulses inside the Q-switched pulse was more than 10 GHz. The average output power was 335 mW at a maximum pump power of 1.6 W. Q-switched envelope widths of 21 and 31 ns were also achieved with crystals 0.7 and 1.0 mm thick, respectively.  相似文献   

10.
A diode-pumped passively Q-switched mode-locked (QML) intracavity frequency-doubled Nd:GdVO4/KTP green laser with a semiconductor saturable absorber is presented. Nearly 100% modulation depth for the mode-locked green pulses can be achieved at any pump power over 1.92 W. The width of the mode-locked green pulse was estimated to be about 150 ps. The mode-locked pulse interval within the Q-switched envelope of 320 ns and the repetition rate of 97.5 kHz were obtained, at an incident pump power of 4.4 W. The repetition rate of the mode-locked green pulses inside the Q-switched envelope was 140 MHz.  相似文献   

11.
We have demonstrated a passively Q-switched and mode-locked Nd:YVO4 laser with an intracavity composite semiconductor saturable absorber (ICSSA). Stable Q-switched and mode-locked pulses with Q-switched envelope pulse duration of 180 ns and pulse repetition rate of 72 KHz have been obtained. The maximum average output power was 1.45 W at 8 W incident pump power. The repetition rate of the mode-locked pulses inside the Q-switched envelope was 154 MHz. Experimental results revealed that this ICSSA was suitable for Q-switched and mode-locked solid-state lasers.  相似文献   

12.
利用Nd:YVO4激光晶体的自受激拉曼效应,结合Cr:YAG被动锁模技术和倍频技术,实现了结构紧凑的1176 nm和588 nm黄光锁模激光输出。激光器为LD端面泵浦,三镜折叠腔结构,并且采用了透过率为10%的输出镜。Nd:YVO4晶体长度为10 mm,Nd3+离子掺杂质量分数为0.2%,Cr:YAG晶体的初始透过率为67%。10 W激光泵浦时,1176 nm激光平均输出功率为123 mW,调Q包络宽度为6 ns,调Q包络内的锁模脉冲重复频率高达1 GHz。588.2 nm 黄光的平均输出功率为8 mW。  相似文献   

13.
用离子注入的半绝缘GaAs晶片作为吸收体和输出镜,在双包层掺镱光纤激光器上实现了调Q锁模. 离子注入的能量为400keV的As+离子,注入剂量为1016/cm2,然后在600℃下退火20min. 当抽运功率为5W时, 脉冲平均输出功率为200mW, 调Q包络重复频率为50kHz, 半高宽为4μs,锁模脉冲重复频率为15MHz. 关键词: 离子注入GaAs 掺镱光纤激光器 被动调Q锁模  相似文献   

14.
H. Ge  S. Zhao  Y. Li  G. Li  D. Li  K. Yang  M. Li  G. Zhang  K. Cheng  Z. Yu 《Laser Physics》2009,19(6):1226-1229
We present a compact passively Q-switched mode-locked Nd:LuVO4 laser run in a Z-type folded cavity with semiconductor saturable absorber mirror (SESAM). The repetition rates of the passively Q-switched pulse envelope ranges from 22.99 to 141.18 kHz as the pump power increased from 2.372 to 8.960 W. The repetition rates of mode-locked laser pulses in the Q-switched pulse envelope has 111 MHz determined by the cavity length and the mode-locked pulse duration is evaluated to be 257 ps. An average output power of 823.5 mW is achieved at the pump power of 8.96 W, corresponding to an optical conversion efficiency of 9.2%.  相似文献   

15.
A diode-pumped passively Q-switched Nd:LuVO4 1.34 μm laser using Co:LMA saturable absorber was successfully demonstrated. The average output power, pulse width, repetition rate of a-cut and c-cut Nd:LuVO4 lasers were studied with different output couplers. The maximum average output power of 164 mW was obtained at the pump power of 10.3 W and the narrowest pulse width of 168 ns was achieved at repetition rate of 457 kHz under pump power of 8.59 W in a-cut Nd:LuVO4 laser with T = 8%.  相似文献   

16.
We demonstrated the first use of carbon nanotube as a saturable absorber in the Q-switched and Q-switched mode-locking of a diode pumped Tm:YAP operating at 2 μm. At the incident pump power of 8.64 W, the minimum Q-switched pulse width of 255.1 ns, and the maximum peak power 53.1 W can be obtained with the corresponding repetition rate of 21.76 kHz. The performance of a diode-pumped passively Q-switched mode-locked Tm:YAP laser with high repetition rate formed with a folded cavity. As high as 780 mW average output power was produced in QML laser. The repetition rate of the mode-locked pulse inside the Q-switched envelope was 244.1 MHz. The dependence of the operational parameters on the pump power was also investigated experimentally.  相似文献   

17.
Room-temperature cw and pulsed operation of a diode-end-pumped Tm:YAP laser   总被引:1,自引:0,他引:1  
We report the continuous-wave and acousto-optical Q-switched operation of a diode-end-pumped Tm:YAP laser. Continuous-wave output power of 3.5 W at 1.99 μm was obtained under the absorbed pump power of 14 W. Under Q-switched laser operation, the average output power increased from 1.57 W to 2.0 W, with an absorbed pump power of 12.6 W, as the repetition rate increased from 1 kHz to 10 kHz. The maximum Q-switched pulse energy was 1.57 mJ with a repetition rate of 1 kHz. The minimum pulse width was measured to be about 80 ns, corresponding to a peak power of 19.6 kW. PACS 42.55.Rz; 42.55.Xi; 42.60.Gd  相似文献   

18.
Q-switching and Q-switched mode-locked Yb:Y2Ca3B4O12 lasers with an acousto-optic switch are demonstrated. In the Q-switching case, an average output power of 530 mW is obtained at the pulse repetition rate of 10.0 kHz under an absorbed pump power of 6.1 W. The minimum pulse width is 79 ns at the repetition rate of 1.7 kHz. The pulse energy and peak energy are calculated to be 231 μJ and 2.03 kW, respectively. In the Q-switched mode-locking case, the average output power of 64 mW with a mode-locked pulse repetition rate of 118 MHz and Q-switched pulse energy of 48 μJ is generated under the absorbed pump power of 6.1 W.  相似文献   

19.
With an undoped YVO4 crystal as a Raman shifter, we substantially improved the reliability and the output performance of an actively Q-switched 1176-nm Nd:YVO4 Raman laser. With an incident pump power of 18.7 W, the average power is greater than 2.6 W at 80 kHz. The pulse width of the pulse envelope is shorter then 5 ns with mode-locked modulation. With an incident pump power of 12.7 W, the pulse energy and peak power is higher than 43 μJ and 14 kW at 40 kHz. PACS 42.55.Ye; 42.55.Xi; 42.60.Gd  相似文献   

20.
This paper reports on a passively mode-locked and Q-switched Nd:YVO4 laser generating picosecond pulses with an average output power exceeding 7 W. In a first step Q-switch mode-locking was obtained by self Q-switching of a mode-locked oscillator with appropriate cavity design, pump power and output coupling. In a second system the Q-switching was actively controlled and stabilized by modulating the resonator internal losses with an acousto-optic modulator. In the Q-switch mode-locking operation the laser provided 12.8 ps long mode-locked pulses with a repetition rate of 80 MHz. The repetition rate of the Q-switch envelope was 185 kHz. The maximum pulse energy of a single ps pulse was 0.55 μJ which is 5.5 times the pulse energy measured for cw mode locking. The total energy of the pulses within the Q-switch envelope was 42 μJ. PACS  42.55.Xi; 42.60.Fc; 42.60.Gd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号