首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this paper, the direct method and the fixed point alternative method are implemented to give Hyers-Ulam-Rassias stability of the functional equation
6f(x + y) - 6f(x - y) + 4f(3y) = 3f(x + 2y) - 3f(x - 2y) + 9f(2y)6f(x + y) - 6f(x - y) + 4f(3y) = 3f(x + 2y) - 3f(x - 2y) + 9f(2y)  相似文献   

2.
Another logarithmic functional equation   总被引:1,自引:0,他引:1  
Summary. Let f : ]0,¥[? \Bbb R f :\,]0,\infty[\to \Bbb R be a real valued function on the set of positive reals. The functional equations¶¶f(x + y) - f(x) - f(y) = f(x-1 + y-1) f(x + y) - f(x) - f(y) = f(x^{-1} + y^{-1}) ¶and¶f(xy) = f(x) + f(y) f(xy) = f(x) + f(y) ¶are equivalent to each other.  相似文献   

3.
In this paper, we establish the general solution and investigate the generalized Hyers-Ulam stability of the following mixed additive and quadratic functional equation
f(lx + y) + f(lx - y) = f(x + y) + f(x - y) + (l- 1)[(l+2)f(x) + lf(-x)],f(\lambda x + y) + f(\lambda x - y) = f(x + y) + f(x - y) + (\lambda - 1)[(\lambda +2)f(x) + \lambda f(-x)],  相似文献   

4.
The aim of the paper is to deal with the following composite functional inequalities
f(f(x)-f(y)) £ f(x+y) + f(f(x-y)) -f(x) - f(y), f(f(x)-f(y)) £ f(f(x+y)) + f(x-y) -f(x) - f(y), f(f(x)-f(y)) £ f(f(x+y)) + f(f(x-y)) -f(f(x)) - f(y),\begin{gathered}f(f(x)-f(y)) \leq f(x+y) + f(f(x-y)) -f(x) - f(y), \hfill \\ f(f(x)-f(y)) \leq f(f(x+y)) + f(x-y) -f(x) - f(y), \hfill \\ f(f(x)-f(y)) \leq f(f(x+y)) + f(f(x-y)) -f(f(x)) - f(y),\end{gathered}  相似文献   

5.
In this paper, we establish a general solution and the generalized Hyers-Ulam-Rassias stability of the following general mixed additive-cubic functional equation
f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x)f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x)  相似文献   

6.
Summary. Let \Bbb K {\Bbb K} be either the field of reals or the field of complex numbers, X be an F-space (i.e. a Fréchet space) over \Bbb K {\Bbb K} n be a positive integer, and f : X ? \Bbb K f : X \to {\Bbb K} be a solution of the functional equation¶¶f(x + f(x)n y) = f(x) f(y) f(x + f(x)^n y) = f(x) f(y) .¶We prove that, if there is a real positive a such that the set { x ? X : |f(x)| ? (0, a)} \{ x \in X : |f(x)| \in (0, a)\} contains a subset of second category and with the Baire property, then f is continuous or { x ? X : |f(x)| ? (0, a)} \{ x \in X : |f(x)| \in (0, a)\} for every x ? X x \in X . As a consequence of this we obtain the following fact: Every Baire measurable solution f : X ? \Bbb K f : X \to {\Bbb K} of the equation is continuous or equal zero almost everywhere (i.e., there is a first category set A ì X A \subset X with f(X \A) = { 0 }) f(X \backslash A) = \{ 0 \}) .  相似文献   

7.
We solve the equation
f(x+g(y)) - f(y + g(y)) = f(x) - f(y)f(x+g(y)) - f(y + g(y)) = f(x) - f(y)  相似文献   

8.
We prove the following statement, which is a quantitative form of the Luzin theorem on C-property: Let (X, d, μ) be a bounded metric space with metric d and regular Borel measure μ that are related to one another by the doubling condition. Then, for any function f measurable on X, there exist a positive increasing function η ∈ Ω (η(+0) = 0 and η(t)t a decreases for a certain a > 0), a nonnegative function g measurable on X, and a set EX, μE = 0 , for which
| f(x) - f(y) | \leqslant [ g(x) + g(y) ]h( d( x,y ) ), x,y ? X / E \left| {f(x) - f(y)} \right| \leqslant \left[ {g(x) + g(y)} \right]\eta \left( {d\left( {x,y} \right)} \right),\,x,y \in {{X} \left/ {E} \right.}  相似文献   

9.
Let X be a normed space and V be a convex subset of X. Let a\colon \mathbbR+ ? \mathbbR+{\alpha \colon \mathbb{R}_+ \to \mathbb{R}_+}. A function f \colon V ? \mathbbR{f \colon V \to \mathbb{R}} is called α-midconvex if
f (\fracx + y2)-\fracf(x) + f(y)2 £ a(||x - y||)    for  x, y ? V.f \left(\frac{x + y}{2}\right)-\frac{f(x) + f(y)}{2}\leq \alpha(\|x - y\|)\quad {\rm for} \, x, y \in V.  相似文献   

10.
Summary In the class of functionalsf:X , whereX is an inner product space with dimX 3, we study the D'Alembert functional equationf(x + y) + f(x – y) = 2f(x)f(y) (1) on the restricted domainsX 1 = {(x, y) X 2/x, y = 0} andX 2 = {(x, y) X 2/x = y}. In this paper we prove that the equation (1) restricted toX 1 is not equivalent to (1) on the whole spaceX. We also succeed in characterizing all common solutions if we add the conditionf(2x) = 2f2(x) – 1. Using this result, we prove the equivalence between (1) restricted toX 2 and (1) on the whole spaceX. This research follows similar previous studies concerning the additive, exponential and quadratic functional equations.  相似文献   

11.
In this paper, we achieve the general solution and the generalized Hyres–Ulam–Rassias stability of the following additive–quadratic functional equation
f (x + ky) + f (x - ky) = f (x + y) + f (x - y) + \frac2(k + 1)k f (ky) - 2(k + 1)f (y)f (x + ky) + f (x - ky) = f (x + y) + f (x - y) + \frac{2(k + 1)}{k} f (ky) - 2(k + 1)f (y)  相似文献   

12.
Under some natural assumptions on real functions f and g defined on a real interval I, we show that a two variable function M f,g : I 2I defined by
Mf,g(x,y)=(f+g)-1(f(x)+g(y))M_{f,g}(x,y)=(f+g)^{-1}(f(x)+g(y))  相似文献   

13.
We are going to discuss special cases of a conditional functional inequality
whereX is a real inner product space. In particular, we will give conditions which force the representationf(x)=c‖x2+a(x) for x ∈X, where c ∈ R anda:x→ℝ is an additive functional.  相似文献   

14.
Under some conditions on the functions f and g defined in a real interval I the function
Q[f,g](x,y):=( \fracfg ) -1 ( \fracf(x) g(y) ) Q^{[f,g]}(x,y):=\left( \frac{f}{g} \right) ^{-1} \left( \frac{f(x)} {g(y)} \right)  相似文献   

15.
Let f ? C(\Bbb Rn,\Bbb Rn) f\in C(\Bbb R^n,\Bbb R^n) be quasimonotone increasing such that Y(f(y)-f(x)) £ -c Y(y-x) (x << y) \Psi (f(y)-f(x)) \!\le -c \Psi (y-x) (x\ll y) for a linear and strictly positive functional Y \Psi and c > 0. We prove that f is a homeomorphism with decreasing and Lipschitz continuous inverse and we prove the global asymptotic stability of the equilibrium solution of x¢=f(x) x'=f(x) .  相似文献   

16.
J. B. Lasserre 《TOP》2012,20(1):119-129
We consider the semi-infinite optimization problem:
f*:=minx ? X {f(x):g(x,y) £ 0, "y ? Yx},f^*:=\min_{\mathbf{x}\in\mathbf{X}} \bigl\{f(\mathbf{x}):g(\mathbf{x},\mathbf{y}) \leq 0, \forall\mathbf{y}\in\mathbf {Y}_\mathbf{x}\bigr\},  相似文献   

17.
The main purpose of this paper is to investigate dynamical systems F : \mathbbR2 ? \mathbbR2{F : \mathbb{R}^2 \rightarrow \mathbb{R}^2} of the form F(x, y) = (f(x, y), x). We assume that f : \mathbbR2 ? \mathbbR{f : \mathbb{R}^2 \rightarrow \mathbb{R}} is continuous and satisfies a condition that holds when f is non decreasing with respect to the second variable. We show that for every initial condition x0 = (x 0, y 0), such that the orbit
O(x0) = {x0, x1 = F(x0), x2 = F(x1), . . . }, O({\rm{x}}_0) = \{{\rm{x}}_0, {\rm{x}}_1 = F({\rm{x}}_0), {\rm{x}}_2 = F({\rm{x}}_1), . . . \},  相似文献   

18.
Let f(x, y) be a periodic function defined on the region D
with period 2π for each variable. If f(x, y) ∈ C p (D), i.e., f(x, y) has continuous partial derivatives of order p on D, then we denote by ω α,β(ρ) the modulus of continuity of the function
and write
For p = 0, we write simply C(D) and ω(ρ) instead of C 0(D) and ω 0(ρ). Let T(x,y) be a trigonometrical polynomial written in the complex form
We consider R = max(m 2 + n 2)1/2 as the degree of T(x, y), and write T R(x, y) for the trigonometrical polynomial of degree ⩾ R. Our main purpose is to find the trigonometrical polynomial T R(x, y) for a given f(x, y) of a certain class of functions such that
attains the same order of accuracy as the best approximation of f(x, y). Let the Fourier series of f(x, y) ∈ C(D) be
and let
Our results are as follows Theorem 1 Let f(x, y) ∈ C p(D (p = 0, 1) and
Then
holds uniformly on D. If we consider the circular mean of the Riesz sum S R δ (x, y) ≡ S R δ (x, y; f):
then we have the following Theorem 2 If f(x, y) ∈ C p (D) and ω p(ρ) = O(ρ α (0 < α ⩾ 1; p = 0, 1), then
holds uniformly on D, where λ 0 is a positive root of the Bessel function J 0(x) It should be noted that either
or
implies that f(x, y) ≡ const. Now we consider the following trigonometrical polynomial
Then we have Theorem 3 If f(x, y) ∈ C p(D), then uniformly on D,
Theorems 1 and 2 include the results of Chandrasekharan and Minakshisundarm, and Theorem 3 is a generalization of a theorem of Zygmund, which can be extended to the multiple case as follows Theorem 3′ Let f(x 1, ..., x n) ≡ f(P) ∈ C p and let
where
and
being the Fourier coefficients of f(P). Then
holds uniformly. __________ Translated from Acta Scientiarum Naturalium Universitatis Pekinensis, 1956, (4): 411–428 by PENG Lizhong.  相似文献   

19.
We study linear bijections of C(X) which preserve the diameter of the range, that is, the seminorm r(f)=sup{|f(x)-f(y)| : x, y ? X}\varrho (f)={\rm sup}\{|f(x)-f(y)| : x, y\in X\}.  相似文献   

20.
The following system considered in this paper:
x¢ = - e(t)x + f(t)fp*(y),        y¢ = - (p-1)g(t)fp(x) - (p-1)h(t)y,x' = -\,e(t)x + f(t)\phi_{p^*}(y), \qquad y'= -\,(p-1)g(t)\phi_p(x) - (p-1)h(t)y,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号