首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李慧玲  杨树政 《中国物理 B》2009,18(11):4721-4725
Introducing a new coordinate system and choosing a set of appropriate matrices γ^μ , this paper attempts to investigate the fermion tunneling of charged particles across the event horizon from the Vaidya--Bonner de Sitter black hole. The result shows that the tunneling rate of the non-static black hole is related not only to the change of Bekenstein--Hawking entropy but also to the integral of the changing horizon, which violates unitary theory and is different from the stationary case.  相似文献   

2.
We derive the metric for a Schwarzschild black hole with global monopole charge by relaxing asymptotic flatness of the Schwarzschild field. We then study the effect of global monopole charge on particle orbits and the Hawking radiation. It turns out that existence, boundedness and stability of circular orbits scale up by (1−8πη 2)−1, and the perihelion shift and the light bending by (1−8πη 2)−3/2, while the Hawking temperature scales down by (1−8πη 2)2 the Schwarzschild values. Hereη is the global charge.  相似文献   

3.
This paper derives the Hawking flux from the Schwarzschild black hole with a global monopole by using Robinson and Wilczek's method. Adopting a dimensional reduction technique, it can describe the effective quantum field in the (3 + 1)-dimensional global monopole background by an infinite collection of the (1 + 1)-dimensional massless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1 + 1)- dimensional black body radiation at the Hawking temperature.  相似文献   

4.
Applying Parikh's quantum tunnelling method, this paper has studied the quantum tunnelling radiation of Schwarzschild de Sitter black hole with a global monopole. The result shows that the tunnelling rates at the event horizon and the cosmological horizon are related to Bekenstein--Hawking entropy and the derived radiation spectrum is not precisely thermal when considering energy conservation and self-gravitation interaction.  相似文献   

5.
邵建舟  王永久 《中国物理 B》2012,21(4):40404-040404
Under the conditions that the wavelength of a particle is much larger than its radius of central mass, and the Schwarzschild field is weak, the scattering of a particle has been studied by many researchers. They obtained that scalar and vector particles abide by Rutherford’s angle distribution by using the low level perturbation method and the scattered field’s approximation in a weak field. The scattering cross section of a photon coincides with the section in Newton’s field of point mass. We can obtain the photon’s polarization effect by calculating the second-order perturbation in the linear Schwarzschild field. This article discusses the scattering and absorption of a particle by a black hole involving a global monopole by using the aforesaid method.  相似文献   

6.
Hawking radiation viewed as a semi-classical tunneling process of charged particles from the event horizon of the Garfinkle–Horne dilaton black hole is investigated by taking into account not only energy conservation but also electric charge conservation. Our results show that when the effect of the emitted massive charged particle's self-gravitation is incorporated, the tunneling rate is related to the change of the black hole's Bekenstein–Hawking entropy and the emission spectrum deviates from the purely thermal spectrum.  相似文献   

7.
8.
9.
Based on the work of Kerner and Mann, fermions tunneling from the Horowitz-Strominger Dilaton black hole on the membrane is studied. Owing to the coupling among electromagnetic field, matter field and gravity field, the Dirac equation of charged particles is introduced, and according to that, the expected emission temperature is obtained. After the self-gravitational interaction is considered, it is found that the tunneling rate of fermions also satisfies the underlying Unitary theory as the case of scalar particles. Supported by the Natural Science Foundation of Sichuan Education Office (Grant No. 07ZC039)  相似文献   

10.
In this paper, we use the generalized uncertainty principle (GUP) and quantum tunneling method to research the formation of the remnant from a Schwarzschild black hole with global monopole. Based on the corrected Hamilton–Jacobi equation, the corrections to the Hawking temperature, heat capacity and entropy are calculated. We not only find the remnant close to Planck scale by employing GUP, but also research the thermodynamic stability of the black hole remnant according to the phase transition and heat capacity.  相似文献   

11.
12.
Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows.  相似文献   

13.
An extension of the Parikh–Wilczek's semi-classical quantum tunneling method, the tunneling radiation of the charged particle from a charged BTZ black hole was investigated. Difference from the uncharged mass-less particle, the geodesics of the charged massive particle tunneling from the black hole is not light-like, but determined by the phase velocity. The derived result shows that the tunneling rate depends on the emitted particle's energy and electric charge, and takes the same functional form as uncharged particle. It also prove that the exact emission spectrum is not strictly pure thermal, but is consistent with the underlying unitary theory.  相似文献   

14.
It is shown here that there is no way for particle creation to occur by quantum tunneling through an infinitesimal neighborhood of the black hole horizon. This result is a trivial consequence of the regularity of the horizon, the equivalence principle and the general covariance of the relativistic theory of gravity. Moreover, we also confirm the less trivial statement that no particle creation by quantum tunneling through the black hole horizon is possible independent of the size of the presupposed tunneling domain.  相似文献   

15.
We study the absorption problem for a massless scalar field propagating in general static spherically-symmetric black holes with a global monopole. The absorption cross section expression is provided using a partial-wave method, which permits us to make an elegant and powerful resummation of the absorption cross section, and to extract the physical information encoded in the sum over the partial-wave contributions.  相似文献   

16.
This paper is devoted to the investigation the fermion tunneling radiation of squashed black holes in the G6del universe and charged Kaluza-Klein space-time. For black holes with different dimensions, establishing a set of appropriate matrices γμ for the general covariant Dirac equation plays an important role in the semi-classical tunneling method. By constructing two sets of γμ matrices, we have successfully derived the tunneling probability and Hawking temperature of the black holes.  相似文献   

17.
18.
Motivated by the Hamilton-Jacobi method of Angheben et al, we investigate the Hawking tunneling radiation from a uniformly accelerating rectilinear black hole for which the horizons and entropy are functions of θ. After several coordinate transformations, we conclude that when the self-gravitational interaction and energy conservation are taken into account, the actual radiation spectrum deviates from the thermal one and the tunneling rate is the function of θ though it is still related to the change of the Bekenstein-Hawking entropy.   相似文献   

19.
In curved space-time, the Hamilton–Jacobi equation is a semi-classical particle equation of motion, which plays an important role in the research of black hole physics. In this paper, starting from the Dirac equation of spin 1/2 fermions and the Rarita–Schwinger equation of spin 3/2 fermions, respectively, we derive a Hamilton–Jacobi equation for the non-stationary spherically symmetric gravitational field background. Furthermore, the quantum tunneling of a charged spherically symmetric Kinnersly black hole is investigated by using the Hamilton–Jacobi equation. The result shows that the Hamilton–Jacobi equation is helpful to understand the thermodynamic properties and the radiation characteristics of a black hole.  相似文献   

20.
Using the thin film brick-wall model, we calculate the fermion entropy on event horizon and the surface density of the entropy on the Rindler Horizon to a rectilinearly accelerating non-stationary black hole with electric and magnetic charges. The conclusion that black hole entropy is proportional to its area can still be applied by regulating the cut-off factor ?? and the film's thickness δδ, which are time dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号