首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the nonlinear instability of incompressible Euler equations. If a steady density is non-monotonic, then the smooth steady state is a nonlinear instability. First, we use variational method to find a dominant eigenvalue which is important in the construction of approximate solutions, then by energy technique and analytic method, we obtain the dynamical instability result.  相似文献   

2.
This paper presents a simple justification of the classical low Mach number limit in critical Besov spaces for compressible Euler equations with prepared initial data. As the first step of this justification, we formulate a continuation principle for general hyperbolic singular limit problems in the framework of critical Besov spaces. With this principle, it is also shown that, for the Mach number sufficiently small, the smooth compressible flows exist on the (finite) time interval where the incompressible Euler equations have smooth solutions, and the definite convergence orders are obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
We establish the convergence of the Vlasov-Poisson-Fokker-Planck system to the incompressible Euler equations in this paper. The convergence is rigorously proved on the time interval where the smooth solution to the incompressible Euler equations exists. The proof relies on the compactness argument and the so-called relative-entropy method.  相似文献   

4.
We consider systems of deformed system of equations, which are obtained by some transformations from the system of incompressible Euler equations. These have similar properties to the original Euler equations including the scaling invariance. For one form of deformed system we prove that finite time blow-up actually occurs for ‘generic’ initial data, while for the other form of the deformed system we prove the global in time regularity for smooth initial data. Moreover, using the explicit functional relations between the solutions of those deformed systems and that of the original Euler system, we derive the condition of finite time blow-up of the Euler system in terms of solutions of one of its deformed systems. As another application of those relations we deduce a lower estimate of the possible blow-up time of the 3D Euler equations. This research was supported partially by the KOSEF Grant no. R01-2005-000-10077-0  相似文献   

5.
Time efficiency is one of the more critical concerns in computational fluid dynamics simulations of industrial applications. Extensive research has been conducted to improve the underlying numerical schemes to achieve time process reduction. Within this context, this paper presents a new time discretization method based on the Adomian decomposition technique for Euler equations. The obtained scheme is time-order adaptive; the order is automatically adjusted at each time step and over the space domain, leading to significant processing time reduction. The scheme is formulated in an appropriate recursive formula, and its efficiency is demonstrated through numerical tests by comparison to exact solutions and the popular Runge–Kutta-discontinuous Galerkin method.  相似文献   

6.
This note presents a short and elementary justification of the classical zero Mach number limit for isentropic compressible Euler equations with prepared initial data. We also show the existence of smooth compressible flows, with the Mach number sufficiently small, on the (finite) time interval where the incompressible Euler equations have smooth solutions.

  相似文献   


7.
带密度的不可压Euler方程在临界Besov空间中的适定性   总被引:1,自引:0,他引:1       下载免费PDF全文
本文证明了带密度的不可压Euler方程在临界Besov空间中的局部适定性,并且只用涡度场给出了强解的一个爆破准则.另外,本文关于带密度的不可压磁流体方程得到了类似结果.  相似文献   

8.
In this paper, we investigate a multidimensional nonisentropic hydrodynamic (Euler-Poisson) model for semiconductors. We study the convergence of the nonisentropic Euler-Poisson equation to the incompressible nonisentropic Euler type equation via the quasi-neutral limit. The local existence of smooth solutions to the limit equations is proved by an iterative scheme. The method of asymptotic expansion and energy methods are used to rigorously justify the convergence of the limit.  相似文献   

9.

The existence of generalized solutions to the two-dimensional stationary Euler equations with nonvanishing vorticity is proved by a new method completely different from the usual variational approaches.

  相似文献   


10.
11.
We provide a new method for treating free boundary problems in perfect fluids, and prove local-in-time well-posedness in Sobolev spaces for the free-surface incompressible 3D Euler equations with or without surface tension for arbitrary initial data, and without any irrotationality assumption on the fluid. This is a free boundary problem for the motion of an incompressible perfect liquid in vacuum, wherein the motion of the fluid interacts with the motion of the free-surface at highest-order.

  相似文献   


12.
The asymptotic expansions are studied for the vorticity to 2D incompressible Euler equations with-initial vorticity , where ϕ0(x) satisfies |d ϕ0(x)|≠0 on the support of and is sufficiently smooth and with compact support in ℝ2 (resp. ℝ2×T) The limit,v(t,x), of the corresponding velocity fields {v ɛ(t,x)} is obtained, which is the unique solution of (E) with initial vorticity ω0(x). Moreover, (ℤ2)) for all 1≽p∞, where and ϕ(t,x) satisfy some modulation equation and eikonal equation, respectively.  相似文献   

13.
We study a random Euler scheme for the approximation of Carathéodory differential equations and give a precise error analysis. In particular, we show that under weak assumptions, this approximation scheme obtains the same rate of convergence as the classical Monte–Carlo method for integration problems.  相似文献   

14.
In this paper, we study the quasi-neutral limit of compressible Euler-Poisson equations in plasma physics in the torus Td. For well prepared initial data the convergence of solutions of compressible Euler-Poisson equations to the solutions of incompressible Euler equations is justified rigorously by an elaborate energy methods based on studies on an λ-weighted Lyapunov-type functional. One main ingredient of establishing uniformly a priori estimates with respect to λ is to use the curl-div decomposition of the gradient.  相似文献   

15.
In this paper we establish the existence of global continuous solutions of gas expansion into a vacuum for the two-dimensional pressure-gradient equations in gas dynamics. Under irrotational condition, By hodograph transformation, the flow is governed by the equation (pp2v)puu+2pupvpuv+(pp2u)pvv=0, which can be further reduced to a inhomogeneous linearly degenerate system of three equations. Then the problem of the expansion of a wedge of gas into a vacuum is solved in the same way.  相似文献   

16.
A relaxation system based on a Lattice-Boltzmann type discrete velocity model is considered in the low Mach number limit. A third order relaxation scheme is developed working uniformly for all ranges of the mean free path and Mach number. In the incompressible Navier-Stokes limit the scheme reduces to an explicit high order finite difference scheme for the incompressible Navier-Stokes equations based on nonoscillatory upwind discretization. Numerical results and comparisons with other approaches are presented for several test cases in one and two space dimensions.

  相似文献   


17.
In this paper a new local discontinuous Galerkin method for the incompressible stationary Navier-Stokes equations is proposed and analyzed. Four important features render this method unique: its stability, its local conservativity, its high-order accuracy, and the exact satisfaction of the incompressibility constraint. Although the method uses completely discontinuous approximations, a globally divergence-free approximate velocity in is obtained by simple, element-by-element post-processing. Optimal error estimates are proven and an iterative procedure used to compute the approximate solution is shown to converge. This procedure is nothing but a discrete version of the classical fixed point iteration used to obtain existence and uniqueness of solutions to the incompressible Navier-Stokes equations by solving a sequence of Oseen problems. Numerical results are shown which verify the theoretical rates of convergence. They also confirm the independence of the number of fixed point iterations with respect to the discretization parameters. Finally, they show that the method works well for a wide range of Reynolds numbers.

  相似文献   


18.
19.
20.
We consider the approximation of Navier-Stokes equations for a Newtonian fluid by Euler type systems with relaxation both in compressible and incompressible cases. This requires to decompose the second-order derivative terms of the velocity into first-order ones. Usual decompositions lead to approximate systems with tensor variables. We construct approximate systems with vector variables by using Hurwitz-Radon matrices. These systems are written in the form of balance laws and admit strictly convex entropies, so that they are symmetrizable hyperbolic. For smooth solutions, we prove the convergence of the approximate systems to the Navier-Stokes equations in uniform time intervals. Global-in-time convergence is also shown for the initial data near constant equilibrium states of the systems. These convergence results are established not only for the approximate systems with vector variables but also for those with tensor variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号