首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of malotilate and its metabolites in plasma and urine   总被引:1,自引:0,他引:1  
A method for the determination of malotilate (I), the corresponding monocarboxylic acid (II) and its decarboxylated product (III) in plasma is described. Plasma was extracted with chloroform spiked with internal standard. The residue, dissolved in methanol, was chromatographed on a reversed-phase column with a mobile phase of 60% acetonitrile and 1% acetic acid in water. The sensitivity limit for I, II and III was 50, 25 and 100 ng/ml of plasma, respectively. Compound I in the same plasma extract was also analysed by gas chromatography--electron-impact mass spectrometry. The base peaks m/z 160 for I and m/z 162 for internal standard (IV) were monitored; the sensitivity limit for I was 2.5 ng/ml of plasma. The determination of the metabolites of I, II and its conjugate (V), and isopropyl-hydrogen malonate (VI) in urine by high-performance liquid chromatography is also described. The limit of quantification for VI was 2.0 micrograms/ml, and the overall coefficient of variation of VI was 4.7%. The limit of quantification for II in urine was 0.5 micrograms/ml and that for V was 1.0 micrograms/ml as total II (II + V). The overall precision of the method was satisfactory. The method was used to determine plasma and urine concentrations in four dogs orally dosed with 100, 200 or 400 mg of malotilate.  相似文献   

2.
A sensitive GC-ECD assay has been developed for the simultaneous determination of midazolam (I) and its α-hydroxy metabolite (II) in plasma. The assay involves extraction of both compounds into ether at alkaline pH (pH 12), followed by silylation of the α-hydroxy metabolite with N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA). On extracting 0.5 ml of plasma, the sensitivity limits are 4ng/ml for I and 3ng/ml for II. If present, the minor urinary metabolites, the 4-hydroxy (III) and the α,4-dihydroxy compound (IV), can also be determined by this method.  相似文献   

3.
The dioxopiperazine metabolites of quinapril in plasma and urine were extracted with hexane-dichloroethane (1:1) under acidic conditions. Following derivatization with pentafluorobenzyl bromide and purification of the desired reaction products using a column packed with silica gel, the metabolites were analysed separately by capillary column gas chromatography-electron-impact mass spectrometry with selected-ion monitoring. The limits of quantitation for the metabolites were 0.2 ng/ml in plasma and 1 ng/ml in urine. The limits of detection were 0.1 ng/ml in plasma and 0.5 ng/ml in urine, at a single-to-noise ratio of greater than 3 and greater than 5, respectively. The proposed method is applicable to pharmacokinetic studies.  相似文献   

4.
A sensitive and specific electron capture-gas chromatographic assay was developed for the determination of 7-iodo-1,3-dihydro-1-methyl-5(2'-fluorophenyl)-2H-1,4-benzodiazepin-2-one (I) and its major metabolites in blood and urine. The overall recovery of I and its N-desmethyl metabolite (II) from blood is apparently quantitative. The recovery of the major urinary metabolite, the N-desmethyl-3-hydroxy analog (IV), and the minor metabolites, the N-desmethyl analog (II) and the N-methyl-3-hydroxy analog (III) added to urine as authentic reference standards ranged from 80 to 85%. The sensitivity limits of detection are of the order of 2-3 ng of I and 4-5 ng of II per ml of blood or urine. The method was applied to the determination of blood levels and the urinary excretion pattern in a dog following oral and intravenous administration of a 1-mg/kg dose (total 13 mg), and in man following the intravenous administration of single 5- and 10-mg doses. The N-desmethyl metabolite II was more predominant in dog blood than was the orally or intravenously administered I, but II was barely measurable in human blood.  相似文献   

5.
A method has been developed for the simultaneous determination of Tranilast, N-(3',4'-dimethoxycinnamoyl)anthranilic acid (N-5'), and metabolites in plasma and urine from humans, dogs and rodents administered N-5'. Total N-5' and metabolite N-3 conjugates were determined in human urine. Detection limits in plasma were 0.2 micrograms/ml for metabolite N-3-S and N-5' and 0.1 micrograms/ml for metabolites N-3 and N-4. In urine, detection limits were 2 micrograms/ml for metabolite N-3-S and N-5' and 1 micrograms/ml for metabolites N-3 and N-4. Metabolite N-4 was not identified in any sample assayed.  相似文献   

6.
A relatively simple reversed-phase high-performance liquid chromatographic method for the determination of the polar metabolites of nifedipine in biological fluids is described. After conversion of 2-hydroxymethyl-6-methyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylic acid 5-methyl ester (IV) into 5,7-dihydro-2-methyl-4-(2-nitrophenyl)-5-oxofuro[3,4-b] pyridine-3-carboxylic acid methyl ester (V) by heating under acidic conditions, V was extracted with n-pentane-dichloromethane (7:3) and analysed on a C18 column with ultraviolet detection. Subsequently, 2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylic acid monomethyl ester (III) was extracted with chloroform and analysed on the same system. Limits of determination in blood were 0.1 microgram/ml for III and 0.05 microgram/ml for IV and V; these limits were two to ten times higher for urine. This inter-assay variability was always less than 7.5%.  相似文献   

7.
A sensitive and enantiospecific gas chromatographic method for the determination of the S(+)- and R(-)-enantiomers of baclofen (I and II) in plasma and urine has been developed and validated. The method is based on the complete resolution of the derivatized enantiomers on a chiral fused-silica capillary column. The hydrochloride salt of a (-)-fluoro analogue of baclofen (III.HCl) was used as the internal standard in plasma, the hydrochloride salt of a (+)-fluoro analogue of baclofen (IV.HCl) as the internal standard in urine. Rapid and convenient isolation of the compounds was achieved using reversed-phase Bond-Elut C18 columns. After elution, the compounds were converted into isobutyl esters and purified by base-specific solvent extraction. The isobutyl esters were then N-acylated with heptafluorobutyric anhydride. The derivatives were quantitated after separation on the chiral column using electron-capture detection. The analysis of spiked plasma and urine samples demonstrated the good accuracy and precision of the method, with limits of quantitation of 25 nmol/l for I and II in plasma and of 2 mumol/l for I and II in urine. The method appears to be suitable for use in pharmacokinetic studies of the enantiomers in plasma and urine from animals and man after administration of the racemic baclofen.  相似文献   

8.
A high-performance liquid chromatographic method for the analysis of 1-ethyl-1,4-dihydro-4-oxo-1,8-naphthyridine-3,7-dicarboxylic acid (I) in plasma and urine is described. A statistical evaluation of the assay technique has shown acceptable accuracy and precision at concentrations as high as 2.0 microgram/ml of plasma or 29.0 microgram/ml of urine for samples augmented with 1. As little as 0.08 microgram/ml of I in plasma or 0.42 microgram/ml of I in urine were quantitatively determined. The mean relative error for the assay of unknown concentrations of I in plasma and urine was +/- 8% and +/- 3%, respectively. This method was used for the analysis of I in the plasma and urine of rhesus monkeys following oral administration of 200 mg/kg of nalidixic acid.  相似文献   

9.
A sensitive and specific gas chromatographic-mass spectrometric method for the simultaneous determination of angiotensin-converting enzyme inhibitor (I, CS-622) and its active desethyl metabolite (II, RS-5139) in plasma and urine was developed. Compound D5-RS-5139 was used as an internal standard and measurements were made by electron-capture negative ion chemical ionization. Extraction from plasma and urine was carried out using Sep-Pak C18 and silica cartridges. The extract of plasma or urine was treated with diazomethane followed by trifluoroacetic anhydride to convert I and II into their methyl ester trifluoroacetyl derivatives. The detection limit of I and II was 0.5 ng/ml in plasma and 5 ng/ml in urine. The proposed method was satisfactory for the determination of I and II in plasma and urine with respect to accuracy and precision. Thus it is suitable for measurement of bioavailability and pharmacokinetics of I and II in body fluids.  相似文献   

10.
On irradiation with short-wavelength ultraviolet light, the potential memory-enhancing compound CL 275,838 (I) and its desbenzyl derivative CL 286,527 (metabolite II) are cleaved into the highly fluorescent derivative CL 228,346 (metabolite IV). This reaction was exploited for the sensitive and selective detection of these compounds in human and animal plasma, after reversed-phase high-performance liquid chromatography on a Supelco LC18 DB column (15 cm x 4.6 mm I.D.) at room temperature. The parent compound and its metabolites were isolated from plasma constituents using the Sep-Pak C18 Plus cartridge, with satisfactory recovery (76-90%) and selectivity. The detection limits were ca. 1.25, 5 and 0.3 ng/ml for I, II and IV, respectively, using 1 ml of plasma. The validation procedure, which includes analysis of multiple ascending calibration curves based on between-day values and replicate analysis of quality control samples analysed with each standard curve, indicated acceptable precision and accuracy of the method within the concentration ranges investigated, the overall coefficient of variation and relative error being less than 10%. The method was successfully applied to plasma samples from healthy volunteers and animals after single of multiple doses of compound I. Metabolites II and IV were detectable in plasma of all species, the former at higher concentrations than the parent compound and metabolite IV. Together with the fact that metabolite II retains much of the parent compound's biological activity in vivo and in vitro, this suggests that it may contribute to the pharmacological effects of compound I.  相似文献   

11.
Four sensitive, simple and specific methods were developed for the determination of desloratadine (DSL), a new antihistaminic drug in pharmaceutical preparations and biological fluids. Methods I and II are based on coupling DSL with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in borate buffer of pH 7.6 where a yellow colored reaction product was obtained and measured spectrophotometrically at 485 nm (Method I). The same product could be measured spectrofluorometrically at 538 nm after excitation at 480 nm (Method II). Methods III and IV, on the other hand, involved derivatization of DSL with 2,4-dinitrofluorobenzene (DNFB) in borate buffer of pH 9.0 producing a yellow colored product that absorbs maximally at 375 nm (Method III). The same derivative was determined after separation adopting HPLC (Method IV). The separation was performed on a column packed with cyanopropyl bonded stationary phase equilibrated with a mobile phase composed of acetonitrile-water (60 : 40, v/v) at a flow rate of 1.0 ml min(-1) with UV detection at 375 nm. The calibration curves were linear over the concentration ranges of 0.5-6, 0.02-0.4, 1-10 and 1-30 microg ml(-1) for Methods I, II, III and IV, respectively. The lower detection limits (LOD) were 0.112, 0.004, 0.172 and 0.290 microg ml(-1), respectively, for the four methods. The limits of quantification (LOQ) were 0.340, 0.012, 0.522 and 0.890 microg ml(-1) for Methods I, II, III and IV, respectively. The proposed methods were applied to the determination of desloratadine in its tablets and the results were in agreement with those obtained using a reference method. Furthermore, the spectrofluorometric method (Method II) was extended to the in-vitro determination of the drug in spiked human plasma, with a mean percentage recovery (n=4) of 99.7+/-3.54. Interference arising from endogenous amino acids has been overcome using solid phase extraction. The proposed methods are highly specific for determination of DSL in the presence of the parent drug loratadine. A proposal for the reaction pathways is postulated.  相似文献   

12.
The fluorescent trypanocidal diamidines 2-(4-amidinophenyl)indole-6-carboxamidine dihydrochloride (I, DAPI), 2-(4-amidinophenyl)benzo[b]thiophene-6-carboxamidine dihydrochloride (II) and 2-(4-amidinophenyl)-1-benzofurane-5-carboxamidine dihydrochloride (III) were determined in plasma, urine, faeces and tissues of experimental animals using quantitative thin-layer chromatography. Samples were extracted with n-octanol after addition of sodium hydroxide and subsequently re-extracted into 0.1 M hydrochloric acid. Chromatography was performed on silica gel plates under nitrogen with n-butanol saturated with 2 M hydrochloric acid. Quantitation was performed by measuring native fluorescence using a fluorodensitometer. The respective diamidines were used as internal standards for each other to ensure precision (coefficient of variation less than 7%) and accuracy of the assay. Calibration curves were linear up to 150 ng/ml of sample solution with detection limits of 10 ng/ml of sample solution for I and III and 50 ng/ml for II. The described method has been successfully used for pharmacokinetic studies in experimental animals.  相似文献   

13.
Abdel-Hay MH  Galal SM  Bedair MM  Gazy AA  Wahbi AA 《Talanta》1992,39(10):1369-1375
A highly sensitive spectrofluorimetric method for the determination of some drugs of the monosubstituted guanidine derivatives in laboratory made tablets, in spiked human serum and in urine samples is presented. The method is based on the reaction of guanethidine sulphate (I), guanoxan sulphate (II) and amiloride hydrochloride (III) with 9,10-phenanthraquinone (IV) to give highly fluorescent derivatives. The linearity ranges were found to be 0.06-0.96 mug/ml for (I) and (II) and 0.04-0.28 mug/ml for (III), with relative standard deviation less than 2%. Mean percentage recoveries for tablets were found to be 99.9 +/- 1.3, 100.5 +/- 1.1 and 100.0 +/- 1.6 for I, II and III, respectively. For I and III the results are highly correlated with the B.P. methods. Using the synchronous fluorimetry, differentiation between I and II was possible. Chloroform, dichloromethane and ethyl acetate have been used to extract I, II and III, respectively from serum and urine at basic pH, followed by applying the proposed fluorimetric method. Percentage recoveries were found to be 95.7-102.2%. The limit of detection is 0.04 mug/ml for I and II and 0.02 mug/ml for III.  相似文献   

14.
A rapid and sensitive method for the simultaneous determination of perhexiline and its cis-4-axial and trans-4-equatorial monohydroxy metabolites (M1 and M3, respectively) in human plasma, urine and bile is described. The assay utilises a single diethyl ether extraction, heptafluorobutyric acid anhydride derivatisation and separation and detection by gas chromatography-electron-capture detection. The limits of detection are 0.1 microgram/ml for perhexiline and 0.025 microgram/ml for the M1 and M3 metabolites. This method has been used in a five-day kinetic study of three healthy adult males who ingested a single 300-mg dose of perhexiline maleate. One of these volunteer subjects exhibited elevated plasma perhexiline and markedly reduced plasma and urinary M1 concentrations together with profoundly prolonged plasma and urinary M1 elimination times when compared with the other two subjects. These differences are thought to be of genetic origin. There were also obvious differences in urinary M3 concentrations which were discussed.  相似文献   

15.
Girisopam possesses selective anxiolytic action without muscle relaxant and anticonvulsive activity. After a 100-mg oral dose of 14C-labelled girisopam to seven male subjects, the mean recovery of 14C radioactivity was 51% in urine and 33% in faeces. A high-performance liquid chromatographic method has been developed for studying girisopam in single-dose pharmacokinetic studies. The serum extract was chromatographed on a normal-phase column using a mobile phase of hexane-ethanol-diethyl ether (66:9:25, v/v) and ultraviolet detection at 235 nm. The recovery was 60% and the detection limit was 3 ng/ml, using 1 ml of serum. After a 20-min delay, girisopam is rapidly absorbed. After reaching a mean serum level of 178 ng/ml at a mean time of 2.0 h, the serum concentration of girisopam decreased with a mean elimination half-time of 22.2 h. The metabolites were separated by high-performance liquid chromatography, radio thin-layer chromatography and gas chromatography. Their structures were determined by liquid chromatography-mass spectrometry, mass spectrometry and gas chromatography-mass spectrometry. Their chemical structures were confirmed by comparison with synthesized reference compounds. The major urinary metabolites were 7-demethylgirisopam (I), 4'-hydroxygirisopam (II) and 4-hydroxymethyl-4-demethylgirisopam (III), which were in conjugated form, and 4-carboxy-4-demethylgirisopam (V), a compound with an open-chain structure (VII) and traces of 4-demethyl-4-oxogirisopam (VIII) and 4-hydroxymethyl-4-demethylgirisopam (III), which were in non-conjugated form. The metabolic profile in the serum consisted predominantly of the glucuronides of I, II and III. The non-conjugated metabolites were the metabolite with the open-chain structure (VII), III and V. Besides the parent compound, the faeces sample contained conjugates of I and II.  相似文献   

16.
In oncology, particularly in pediatric malignancies, high doses (5-10 g/m2) of the oxazaphosphorine ifosfamide play an important role in the treatment of sarcomas. Pharmacokinetic data of ifosfamide and its metabolites in these cases are scanty. Considering the special demands of the determination of ifosfamide in plasma of young children, a very sensitive capillary gas chromatographic method, requiring only 50 microliters of plasma, has been developed. This bioanalysis of ifosfamide shows good linearity and accuracy in the concentration range 10 ng to 100 micrograms per ml of plasma and 25 ng to 1 mg per ml of urine. The absolute limits of detection in plasma and urine are 2 ng/ml and 5 ng/ml, respectively. The stability of various solutions of ifosfamide and trofosfamide was tested and proved to be satisfactory, except for ifosfamide in plasma and urine kept in the refrigerator. The validity of the method for pharmacokinetic purposes is shown in the case of one patient.  相似文献   

17.
A high-pressure liquid chromatographic method for the analysis of rosoxacin and its pyridyl N-oxide metabolite in plasma and urine extracts is described. A statistical evaluation of the assay data has shown acceptable accuracy and precision for 0.5 to 25 microgram of rosoxacin or the metabolite per ml of plasma and for 2.5 to 60 microgram/ml of either compound in urine. The minimum quantifiable level for rosoxacin was 0.13 microgram/ml in plasma and 0.64 microgram/ml in urine; for the metabolite in plasma and urine, the corresponding values were 0.21 and 0.60 microgram/ml, respectively. The method was applied to plasma and urine from three dogs medicated orally with 5 mg/kg of rosoxacin. The pharmacokinetic parameters calculated for rosoxacin were: plasma halflife, 1.9 h; plasma clearance, 65 ml/min; volume of distribution, 11.31. The average total urinary excretion of rosoxacin as free and conjugated rosoxacin and its free N-oxide was 7.7 +/- 0.2% over the 48-h collection period.  相似文献   

18.
[2S-(2 alpha,3 beta,5 alpha)]-3-Methyl-7-oxo-3-(1H-1,2,3-triazol-1-yl- methyl)-4-thia-1-azabicyclo [3.2.0]-heptane-2-carboxylic acid 4,4-dioxide (YTR-830H) is a new beta-lactamase inhibitor and the combination therapy of this compound with piperacillin is now under study. For the determination of the beta-lactamase inhibitor and piperacillin in biological materials, plasma and visceral tissue homogenates were deproteinized, whereas diluted urine and filtered faeces homogenates were treated with a Sep-Pak C18 cartridge. In order to assay the inactive metabolite of beta-lactamase inhibitor, each sample was treated with a Sep-Pak C18 cartridge. Aliquots of each preparation were chromatographed using ion-pair and reversed-phase chromatographic techniques on a high-performance liquid chromatograph equipped with a UV detector, set at 220 nm. The detection limits of beta-lactamase inhibitor and piperacillin were 0.2 microgram/ml in plasma, 2.5-5.0 micrograms/ml in urine and 0.2-0.5 microgram/g in visceral tissue and faeces. Those of the metabolite were 1.0 microgram/ml in plasma, 2.5-5.0 micrograms/ml in urine and 1.0 microgram/g in visceral tissue and faeces. A precise and sensitive assay for the determination of the beta-lactamase inhibitor, its metabolite and piperacillin is described, and their stabilities in several media are reported.  相似文献   

19.
Methods for determining concentrations of a new morpholino anthracycline MX2.HCl and its metabolites in biological samples using reversed-phase high-performance liquid chromatography and fluorescence detection are described. The limits of detection were less than 1 ng/ml for all compounds after extraction from 0.5 ml of plasma using C18 Sep-Pak cartridges and consecutive solvent extraction. The recoveries from rat plasma ranged from 72.0 to 89.3%. The peak-height ratio of the fluorescence intensities of these compounds versus internal standard showed a linear correlation for concentrations up to at least 500 ng/ml in the plasma (correlation coefficient r greater than 0.999). The within-day and between-day precisions of this assay were in the range 0.8-8.7% (n = 5) and 2.0-3.5% (n = 5), respectively. The concentrations of these compounds in the blood and urine can be also determined by a slight modification of the extraction procedure.  相似文献   

20.
A selective and sensitive gas chromatographic method for simultaneous determination of sulfinpyrazone and two of its metabolites (the para-hydroxylated metabolite and the sulfone metabolite) in biological fluids using alkali flame ionization detection (AFID), electron capture detection (ECD) and mass fragmentographic detection is described. The compounds are extracted from the samples, methylated and separated on 2% OV-17 or 3% OV-225 columns. Phenylbutazone is used as internal standard. Standard curves are linear. The coefficient of variation at 10 microgram/ml of sulfinpyrazone in plasma was shown to be 1.8% (AFID), and the detection limits were 0.1 microgram/ml (AFID) and 10 ng/ml (ECD). Mass spectra of the methylated compounds are shown and serum concentration curves after oral administration of 100 mg sulfinpyrazone to two persons are determined together with the excreted amounts of drug and metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号