首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用精密从头算方法研究了(H2O)11的9种低能异构体的性质, 包括优化的几何结构、结合能、偶极矩和氢键个数等, 并且得出了515-a是(H2O)11的全局最低能结构. 同时, 也用ABEEM/MM(atom bond electronegativity equalization method/molecular mechanics) 模型研究了这些性质, 与从头算的结果进行了比较, 得到了相符合的结果. 这显示了ABEEM/MM模型在描述中等大小的水分子团簇结构上是成功的.  相似文献   

2.
An efficient approach is described for using accurate ab initio calculations to determine the rates of elementary condensation and evaporation processes that lead to nucleation of aqueous aerosols. The feasibility of the method is demonstrated in an application to evaporation rates of water dimer at 230 K. The method, known as ABC-FEP (ab initio/classical free energy perturbation), begins with a calculation of the potential of mean force for the dissociation (evaporation) of small water clusters using a molecular dynamics (MD) simulation with a model potential. The free energy perturbation is used to calculate how changing from the model potential to a potential calculated from ab initio methods would alter the potential of mean force. The difference in free energy is the Boltzmann-weighted average of the difference between the ab initio and classical potential energies, with the average taken over a sample of configurations from the MD simulation. In principle, the method does not require a highly accurate model potential, though more accurate potentials require fewer configurations to achieve a small sampling error in the free energy perturbation step. To test the feasibility of obtaining accurate potentials of mean force from ab initio calculations at a modest number of configurations, the free energy perturbation method has been used to correct the errors when some standard models for bulk water (SPC, TIP4P, and TIP4PFQ) are applied to water dimer. To allow a thorough exploration of sampling issues, a highly accurate fit to results of accurate ab initio calculations, known as SAPT-5s, as been used a proxy for the ab initio calculations. It is shown that accurate values for a point on the potential of mean force can be obtained from any of the water models using ab initio calculations at only 50 configurations. Thus, this method allows accurate simulations of small clusters without the need to develop water models specifically for clusters.  相似文献   

3.
The interaction between formic acid (FA) and water was systemically investigated by atom-bond electronegativity equalization method fused into molecular mechanics (ABEEMσπ/MM) and ab initio methods. The geometries of 20 formic acid–water complexes (FA–water) were obtained using B3LYP/aug-cc-pVTZ level optimizations, and the energies were determined at the MP2/aug-cc-pVTZ level with basis set superposition error (BSSE) and zero-point vibrational energy (ZPVE) corrections. The ABEEMσπ potential model gives reasonable properties of these clusters when compared with the present ab initio data. For interaction energies, the root mean square deviation is 0.74 kcal/mol, and the linear coefficient reaches 0.993. Next, FA in aqueous solution was also studied. The hydrogen-bonding pattern due to the interactions with water has been analyzed in detail. Furthermore, the ABEEMσπ charges changed when H2O interacted with the FA molecule, especially at the sites where the hydrogen bonds form. These results show that the ABEEMσπ fluctuating charge model is fine giving the overall characteristic hydration properties of FA–water systems in good agreement with the high-level ab initio calculations.  相似文献   

4.
We have performed extensive ab initio and classical molecular dynamics (MD) simulations of benzene in water in order to examine the unique solvation structures that are formed. Qualitative differences between classical and ab initio MD simulations are found and the importance of various technical simulation parameters is examined. Our comparison indicates that nonpolarizable classical models are not capable of describing the solute-water interface correctly if local interactions become energetically comparable to water hydrogen bonds. In addition, a comparison is made between a rigid water model and fully flexible water within ab initio MD simulations which shows that both models agree qualitatively for this challenging system.  相似文献   

5.
In this work we focus on the binding of excess electrons to water clusters, a problem for which dispersion interactions, which originate from long-range correlation effects, are especially important. Two different model potential approaches, one using quantum Drude oscillators and the other using polarization potentials, are investigated for describing the long-range correlation effects between the weakly bound excess electron and the more tightly bound electrons of the monomers. We show that these two approaches are related in that the polarization potential models can be derived from the quantum Drude model approach by use of an adiabatic separation between the excess electron and the Drude oscillators. The model potential approaches are applied to clusters containing up to 45 water monomers. Where possible, comparison is made with the results of ab initio electronic structure calculations. Overall, the polarization potential approach is found to give electron binding energies in good agreement with those from the Drude model and ab initio calculations, with the greatest discrepancies being found for "cavity-bound" anion states.  相似文献   

6.
In this work, the dynamical nucleation theory (DNT) model using the ab initio based effective fragment potential (EFP) is implemented for evaluating the evaporation rate constant and molecular properties of molecular clusters. Predicting the nucleation rates of aerosol particles in different chemical environments is a key step toward understanding the dynamics of complex aerosol chemistry. Therefore, molecular scale models of nanoclusters are required to understand the macroscopic nucleation process. On the basis of variational transition state theory, DNT provides an efficient approach to predict nucleation kinetics. While most DNT Monte Carlo simulations use analytic potentials to model critical sized clusters, or use ab initio potentials to model very small clusters, the DNTEFP Monte Carlo method presented here can treat up to critical sized clusters using the effective fragment potential (EFP), a rigorous nonempirical intermolecular model potential based on ab initio electronic structure theory calculations, improvable in a systematic manner. The DNTEFP method is applied to study the evaporation rates, energetics, and structure factors of multicomponent clusters containing water and isoprene. The most probable topology of the transition state characterizing the evaporation of one water molecule from a water hexamer at 243 K is predicted to be a conformer that contains six hydrogen bonds, with a topology that corresponds to two water molecules stacked on top of a quadrangular (H(2)O)(4) cluster. For the water hexamer in the presence of isoprene, an increase in the cluster size and a 3-fold increase in the evaporation rate are predicted relative to the reaction in which one water molecule evaporates from a water hexamer cluster.  相似文献   

7.
8.
Two-phase molecular dynamics simulations employing a Monte Carlo volume sampling method were performed using an ab initio based force field model parameterized to reproduce quantum-mechanical dimer energies for methanol and 1-propanol at temperatures approaching the critical temperature. The intermolecular potential models were used to obtain the binodal vapor-liquid phase dome at temperatures to within about 10 K of the critical temperature. The efficacy of two all-atom, site-site pair potential models, developed solely from the energy landscape obtained from high-level ab initio pair interactions, was tested for the first time. The first model was regressed from the ab initio landscape without point charges using a modified Morse potential to model the complete interactions; the second model included point charges to separate Coulombic and dispersion interactions. Both models produced equivalent phase domes and critical loci. The model results for the critical temperature, density, and pressure, in addition to the sub-critical equilibrium vapor and liquid densities and vapor pressures, are compared to experimental data. The model's critical temperature for methanol is 77 K too high while that for 1-propanol is 80 K too low, but the critical densities are in good agreement. These differences are likely attributable to the lack of multi-body interactions in the true pair potential models used here.  相似文献   

9.
The physical and chemical properties of the amorphous silica-water interface are of crucial importance for a fundamental understanding of electrochemical and electrokinetic phenomena, and for various applications including chromatography, sensors, metal ion extraction, and the construction of micro- and nanoscale devices. A model for the undissociated amorphous silica-water interface reported here is a step toward a practical microscopic model of this important system. We have extended the popular BKS and SPC/E models for bulk silica and water to describe the hydrated, hydroxylated amorphous silica surface. The parameters of our model were determined using ab initio quantum chemical studies on small fragments. Our model will be useful in empirical potential studies, and as a starting point for ab initio molecular dynamics calculations. At this stage, we present a model for the undissociated surface. Our calculated value for the heat of immersion, 0.3 J x m(-2), falls within the range of reported experimental values of 0.2-0.8 J x m(-2). We also study the perturbation of water properties near the silica-water interface. The disordered surface is characterized by regions that are hydrophilic and hydrophobic, depending on the statistical variations in silanol group density.  相似文献   

10.
A polarizable model for simulation of liquid methanol, compatible with the COS/G2 water model, has been developed using the Charge-on-Spring (COS) technique. The model consists of three point charges, with one polarizable center on the oxygen atom. The Lennard-Jones parameters on the oxygen atom together with the molecular polarizability were varied to reproduce the experimental heat of vaporization and density of liquid methanol at ambient conditions. We examined the energies of various methanol dimers in the gas phase and compared them with values obtained from ab initio calculations. The model was then used to study the thermodynamic, dynamic, structural, and dielectric properties of liquid methanol as well as of a methanol-water mixture. A microscopic picture of the structure of pure liquid methanol and of the methanol-water mixture is provided. Good agreement was found between the results from our model simulations and available experimental and ab initio calculation data. In particular, the experimental dielectric permittivity of 32 could be reproduced, which had been shown to be difficult when using nonpolarizable models.  相似文献   

11.
The structure of an accurate ab initio model of aqueous chloride ion was calculated at two high-temperature state points (573 K, 0.725 g/cm(3) and 723 K, 0.0098 g/cm(3)) by a two-step procedure. First, the structure of an approximate model was calculated from a molecular dynamics simulation of the model. Then the difference between the structure of the ab initio model and the approximate model was calculated by non-Boltzmann weighting of a sample of configurations taken from the approximate model simulation. Radial distribution functions, average coordination numbers, the distribution of coordination numbers, an analysis of orientations of water in the first coordination shell, and the free energy of hydration of the chloride ion are reported for both state points. The most common water structure has one hydrogen close to the chloride ion and one pointing away (46% at 573 K and 57% at 723 K). Waters in the first coordination shell that are not strongly bound to the chloride ions are common. Several variations of the method were tested. Models in which the water-water interaction is calculated with ab initio methods predict only a slightly different structure than models in which water-water interactions are determined from the approximate models. Similarly, using the approximate model for solute-water interactions when the water is far from the chloride ion did not affect the results. Uncertainties due to the limited sample of configurations are estimated and found to be small. The results are in qualitative agreement with X-ray and neutron diffraction experiments and with simulations of approximate models.  相似文献   

12.
Electronic properties of a water molecule embedded in a water droplet are studied in the framework of the generalized self-consistent reaction field approach, using ab initio Hartree-Fock and configuration interaction wave functions. Electrostatic and inductive effects of the surrounding water molecules were calculated with the help of configurations drawn from a classical molecular dynamics simulation. Basis-set effects and solute-solvent interaction operator representation are examined. Embedding energies and liquid-phase multipole moments obtained from the present mixed quantum-classical model are compared with corresponding quantities for purely classical water models. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
It is demonstrated that many-body force field models based solely on pairwise Coulomb screening cannot simultaneously reproduce both gas-phase and condensed-phase polarizability limits. Several many-body force field model forms are tested and compared with basis set-corrected ab initio results for a series of bifurcated water chains. Models are parameterized to reproduce the ab initio polarizability of an isolated water molecule, and pairwise damping functions are set to reproduce the polarizability of a water dimer as a function of dimer separation. When these models are applied to extended water chains, the polarization is over-predicted, and this over-polarization increased as a function of the overlap of molecular orbitals as the chains are compressed. This suggests that polarizable models based solely on pairwise Coulomb screening have some limitations, and that coupling with non-classical many-body effects, in particular exchange terms, may be important.  相似文献   

14.
Monte Carlo simulations of liquid methanol were performed using a refined ab initio derived potential which includes polarizability, nonadditivity, and intramolecular relaxation. The results present good agreement between the energetic and structural properties predicted by the model and those predicted by ab initio calculations of methanol clusters and experimental values of gas and condensed phases. The molecular level picture of methanol shows the existence of both rings and linear polymers in the methanol liquid phase.  相似文献   

15.
Molecular dynamics simulations were performed using a modified amoeba force field to determine hydration and dynamical properties of the divalent cations Ca2+ and Mg2+. The extension of amoeba to divalent cations required the introduction of a cation specific parametrization. To accomplish this, the Thole polarization damping model parametrization was modified based on the ab initio polarization energy computed by a constrained space orbital variation energy decomposition scheme. Excellent agreement has been found with condensed phase experimental results using parameters derived from gas phase ab initio calculations. Additionally, we have observed that the coordination of the calcium cation is influenced by the size of the periodic water box, a recurrent issue in first principles molecular dynamics studies.  相似文献   

16.
Current status of the theory of orientational defects in H-bonded pattern of liquid water is briefly reviewed. Ab initio calculated water clusters from dimer to heptamer are thoroughly analyzed in terms of H-bonded pattern. New water heptamer structure of norbornane type is found via ab initio HF 6-311G** calculation. Its normal vibrations are properly assigned. Two ab initio water hexamers that refer to orientational defects are revealed. This is the first evidence of ab initio orientational defect in H-bonded patterns of water clusters. Some properties including normal vibrations of these defects, are studied.  相似文献   

17.
Nilotinib is a novel anticancer drug, which specifically binds to the Abl kinase and blocks its signaling activity. In order to model the nilotinib/protein interactions, we have developed a molecular mechanics force field for nilotinib, consistent with the CHARMM force field for proteins and nucleic acids. Atomic charges were derived by utilizing a supermolecule ab initio approach. We considered the ab initio energies and geometries of a probe water molecule that interacts with nilotinib fragments at six different positions. We investigated both neutral and protonated states of nilotinib. The final rms deviation between the ab initio and the force field energies, averaged over both forms, was equal 0.2 kcal/mol. The model reproduces the ab initio geometry and flexibility of nilotinib. To apply the force field to nilotinib/Abl simulations, it is also necessary to determine the most likely protein and nilotinib protonation state when it binds to Abl. This task was carried out using molecular dynamics free energy simulations. The simulations indicate that nilotinib can interact with Abl in protonated and deprotonated forms, with the protonated form more favoured for the interaction. In the course of our calculations, we established that the His361, a titratable amino acid residue that mediates the interaction, prefers to be neutral. These insights and models should be of interest for drug design.  相似文献   

18.
A method is presented to calculate the electron-electron and nuclear-electron intermolecular Coulomb interaction energy between two molecules by separately fitting the unperturbed molecular electron density of each monomer. This method is based on the variational Coulomb fitting method which relies on the expansion of the ab initio molecular electron density in site-centered auxiliary basis sets. By expanding the electron density of each monomer in this way the integral expressions for the intermolecular electrostatic calculations are simplified, lowering the operation count as well as the memory usage. Furthermore, this method allows the calculation of intermolecular Coulomb interactions with any level of theory from which a one-electron density matrix can be obtained. Our implementation is initially tested by calculating molecular properties with the density fitting method using three different auxiliary basis sets and comparing them to results obtained from ab initio calculations. These properties include dipoles for a series of molecules, as well as the molecular electrostatic potential and electric field for water. Subsequently, the intermolecular electrostatic energy is tested by calculating ten stationary points on the water dimer potential-energy surface. Results are presented for electron densities obtained at four different levels of theory using two different basis sets, fitted with three auxiliary basis sets. Additionally, a one-dimensional electrostatic energy surface scan is performed for four different systems (H2O dimer, Mg2+-H2O, Cu+-H2O, and n-methyl-formamide dimer). Our results show a very good agreement with ab initio calculations for all properties as well as interaction energies.  相似文献   

19.
This research addresses a comprehensive particle-based simulation study of the structural, dynamic, and electronic properties of the liquid-vapor interface of water utilizing both ab initio (based on density functional theory) and empirical (fixed charge and polarizable) models. Numerous properties such as interfacial width, hydrogen bond populations, dipole moments, and correlation times will be characterized with identical schemes to draw useful conclusions on the strengths and weakness of the proposed models for interfacial water. Our findings indicate that all models considered in this study yield similar results for the radial distribution functions, hydrogen bond populations, and orientational relaxation times. Significant differences in the models appear when examining both the dipole moments and surface relaxation near the aqueous liquid-vapor interface. Here, the ab initio interaction potential predicts a significant decrease in the molecular dipole moment and expansion in the oxygen-oxygen distance as one approaches the interface in accordance with recent experiments. All classical polarizable interaction potentials show a less dramatic drop in the molecular dipole moment, and all empirical interaction potentials studied yield an oxygen-oxygen contraction as the interface is approached.  相似文献   

20.
The dynamical properties of liquid water play an important role in many processes in nature. In this paper, we focus on the infrared (IR) absorption spectrum of liquid water based on the linearized semiclassical initial value representation (LSC-IVR) with the local Gaussian approximation (LGA) [J. Liu and W. H. Miller, J. Chem. Phys. 131, 074113 (2009)] and an ab initio based, flexible, polarizable Thole-type model (TTM3-F) [G. S. Fanourgakis and S. S. Xantheas, J. Chem. Phys. 128, 074506 (2008)]. Although the LSC-IVR (LGA) gives the exact result for the isolated three-dimensional shifted harmonic stretching model, it yields a blueshifted peak position for the more realistic anharmonic stretching potential. By using the short-time information of the LSC-IVR correlation function; however, it is shown how one can obtain more accurate results for the position of the stretching peak. Due to the physical decay in the condensed phase system, the LSC-IVR (LGA) is a good and practical approximate quantum approach for the IR spectrum of liquid water. The present results offer valuable insight into future attempts to improve the accuracy of the TTM3-F potential or other ab initio-based models in reproducing the IR spectrum of liquid water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号