首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The vibrational structure of the endohedral cluster fullerene Sc(3)N@C(78) is studied by FTIR spectroscopy, Raman spectroscopy and DFT-based quantum chemical calculations. Remarkably good agreement between experimental and calculated spectra is achieved and a full assignment of the Sc(3)N-based vibrational modes is given. Significant differences in the vibrational structure of the endohedral cluster fullerene Sc(3)N@C(78) and the empty, charged C(78) (6-): 5 (D(3h)') are rationalized by the strong coupling between the Sc(3)N cluster and the fullerene cage. This coupling has its origin in a significant overlap of the Sc(3)N and C(78) molecular orbitals, and causes atomic-charge and bond-length redistributions compared to the neutral C(78) and the C(78) (6-) anion. An ionic model is not sufficient to describe the electronic, geometric and vibrational structure of the Sc(3)N@C(78) nitride cluster fullerene.  相似文献   

2.
We report here for the first time a full comparison of the exohedral reactivity of a given fullerene and its parent trinitride template endohedral metallofullerene. In particular, we study the thermodynamics and kinetics for the Diels-Alder [4 + 2] cycloaddition between 1,3-butadiene and free D3h'-C78 fullerene and between butadiene and the corresponding endohedral D3h-Sc3N@C78 derivative. The reaction is studied for all nonequivalent bonds, in both the free and the endohedral fullerenes, at the BP86/TZP//BP86/DZP level. The change in exohedral reactivity and regioselectivity when a metal cluster is encapsulated inside the cage is profound. Consequently, the Diels-Alder reaction over the free fullerene and the endohedral derivative leads to totally different cycloadducts. This is caused by the metal nitride situated inside the fullerene cage that reduces the reactivity of the free fullerene and favors the reaction over different bonds.  相似文献   

3.
Carbon clusters     
Some of the most significant discoveries and achievements concerning the mass spectra and gas phase ion chemistry of carbon clusters are reviewed. These include (1) nanosecond and femtosecond laser ionizations; (2) ion structures through ion/molecule reactions, ion chromatography, and computational methods; (3) carbon cluster cooling through radiative decay, dissociative decay, and thermionic emission; (4) mechanisms and energetics of fragmentation reactions; (5) endohedral fullerenes including recent data on ion beam implantation, and (6) ion chemistry as a function of the fullerene charge state.  相似文献   

4.
It is known that silicon fullerenes cannot maintain perfect cage structures like carbon fullerenes. Previous density-functional theory calculations have shown that even with encapsulated species, nearly all endohedral silicon fullerenes exhibit highly puckered cage structures in comparison with their carbon counterparts. In this work, we present theoretical evidences that the tetrahedral fullerene cage Si(28) can be fully stabilized by encapsulating a tetrahedral metallic cluster (Al(4) or Ga(4)). To our knowledge, this is the first predicted endohedral silicon fullerene that can retain perfectly the same cage structure (without puckering) as the carbon fullerene counterpart (T(d)-C(28) fullerene). Density-functional theory calculations also suggest that the two endohedral metallosilicon fullerenes T(d)-M(4)@Si(28) (M=Al and Ga) can be chemically stable because both clusters have a large highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap ( approximately 0.9 eV), strong spherical aromaticity (nucleus-independent chemical shift value of -36 and -44), and large binding and embedding energies.  相似文献   

5.
We performed a constrained search, combined with density-functional theory optimization, of low-energy geometric structures of silicon clusters Si(39), Si(40), Si(50), Si(60), Si(70), and Si(80). We used fullerene cages as structural motifs to construct initial configurations of endohedral fullerene structures. For Si(39), we examined six endohedral fullerene structures using all six homolog C(34) fullerene isomers as cage motifs. We found that the Si(39) constructed based on the C(34)(C(s):2) cage motif results in a new leading candidate for the lowest-energy structure whose energy is appreciably lower than that of the previously reported leading candidate obtained based on unbiased searches (combined with tight-binding optimization). The C(34)(C(s):2) cage motif also leads to a new candidate for the lowest-energy structure of Si(40) whose energy is notably lower than that of the previously reported leading candidate with outer cage homolog to the C(34)(C(1):1). Low-lying structures of larger silicon clusters Si(50) and Si(60) are also obtained on the basis of preconstructed endohedral fullerene structures. For Si(50), Si(60), and Si(80), the obtained low-energy structures are all notably lower in energy than the lowest-energy silicon structures obtained based on an unbiased search with the empirical Stillinger-Weber potential of silicon. Additionally, we found that the binding energy per atom (or cohesive energy) increases typically >10 meV with addition of every ten Si atoms. This result may be used as an empirical criterion (or the minimal requirement) to identify low-lying silicon clusters with size larger than Si(50).  相似文献   

6.
Theoretical studies on structures and properties of endohedral fullerene complexes formed by encapsulating small molecules of HF, H20, NH3, and CH4 in a C32 fullerene cage, were carried out by ab initio method. Current calculations reveal that these processes to encase them in fullerene are energetically unfavorable because of the small cavity size of C32. The red shift in the F-H stretching frequency indicates the potential existence of hydrogen bonding between the HF molecule and the carbon cage.  相似文献   

7.
Unimolecular decomposition of C70(+) and its endohedral cation N@C70(+) were studied by high-resolution mass-analyzed ion kinetic energy (MIKE) spectrometry. Information on the energetics and dynamics of these reactions was extracted. C70(+) dissociates unimolecularly by loss of a C2 unit, whereas N@C70(+) expels the endohedral N atom. Kinetic energy release distributions (KERDs) in these reactions were measured. By use of finite heat bath theory (FHBT), the binding energy for C2 emission from C70(+) and the activation energy for N elimination from N@C70(+) were deduced from KERDs in the light of a recent finding that fragmentation of fullerene cations proceeds via a very loose transition state. The activation energy measured for N extrusion from N@C70(+) was found to be lower than that for C2 evaporation, higher than the value from its neutral molecule N@C70 obtained on the basis of thermal stability measurements, and coincident with the theoretical value. The results provide confirmation that the proposed extrusion mechanism in which the N atom escapes from the cage via formation of an aza-bridged intermediate is correct.  相似文献   

8.
Structural characterizations of three new mixed-metal endohedrals, GdSc 2N@ I h -C80, Gd 2ScN@ I h -C80, and TbSc 2@ I h -C80, have been obtained by single-crystal X-ray diffraction on GdSc 2N@ I h -C80 x Ni (II)(OEP) x 2C 6H 6, Gd 2ScN@ I h -C 80 x Ni(II)(OEP) x 2C6H6, and TbSc 2N@ I h -C80 x Ni (II)(OEP) x 2C6H6. All three have I h -C 80 cages and planar MM' 2N units. The central nitride ion is positioned further from the larger Gd3+ or Tb3+ ions and closer to the smaller Sc3+ ions. The MM' 2N units show a remarkable degree of orientational order in these and related compounds in which the endohedral fullerene is cocrystallized with a metalloporphyrin. The MM' 2N units are oriented perpendicularly to the porphyrin plane and aligned along one of the N-Ni-N axes of the porphyrin. The smaller Sc3+ ions show a marked preference to lie near the porphyrin plane. The larger Gd3+ or Tb3+ ions assume positions further from the plane of the porphyrin. The roles of dipole forces and electrostatic forces in ordering these cocrystals of endohedral fullerenes and metalloporphyrins are considered.  相似文献   

9.
Y2@C79N and Tb2@C79N have been prepared by conducting the Kratschmer-Huffman electric-arc process under 20 Torr of N2 and 280 Torr of He with metal oxide-doped graphite rods. These new heterofullerenes were separated from the resulting mixture of empty cage fullerenes and endohedral fullerenes by chemical separation and a two-stage chromatographic process. Crystallographic data for Tb2@C79N x Ni(OEP) x 2 C6H6 demonstrate the presence of an 80-atom cage with idealized I(h) symmetry and two, widely separated Tb atoms inside with a Tb-Tb separation of 3.9020(10) A for the major terbium sites. The EPR spectrum of the odd-electron Y2@C79N indicates that the spin density largely resides on the two equivalent yttrium ions. Computational studies on Y2@C79N suggest that the nitrogen atom resides at a 665 ring junction in the equator on the fullerene cage and that the unpaired electron is localized in a bonding orbital between the two yttrium ions of this stable radical. Thus, the Tb-Tb bond length of the single-electron bond is an exceedingly long metal-metal bond.  相似文献   

10.
The endohedral fullerene Sc(3)NC@C(80)-I(h) has been synthesized and characterized; it has an unprecedented planar quinary cluster in a fullerene cage. It is also the first chemical compound in which the presence of an unprecedented (NC)(3-) trianion has been disclosed. The fascinating intramolecular dynamics in Sc(3)NC@C(80)-I(h) enables the whole molecule to display high polarity and promising ferroelectricity. This finding inspires the possibility that such a planar quinary cluster may be useful in constructing many other endohedral fullerenes.  相似文献   

11.
The family of endohedral fullerenes was significantly enlarged within the past six years by the clusterfullerenes containing structures like the M(2)C(2) carbides and the M(3)N nitrides. While the carbide clusters are generated under the standard arc burning conditions according to the stabilisation energy the nitride clusterfullerene type is formed by varying the composition of the cooling gas atmosphere in the arc burning process. The special situation in nitride clusterfullerene synthesis is described in detail and the optimum conditions for the production of nitride clusterfullerenes as the main product in fullerene synthesis are discussed. A review of new nitride clusterfullerenes reported recently is given summarizing the structures, properties and the stability of metal nitride clusterfullerenes. It is shown that all cages with even carbon atoms of C(68) and beyond are available as endohedral nitride clusterstructures. Furthermore the nitride clusterfullerenes are that class of endohedral fullerenes forming the largest number of non-IPR structures. Finally the prospects of this evolving field are briefly discussed taking the superior stability of these endohedral clusterfullerenes into account.  相似文献   

12.
The present paper reports the photophysical aspects of a very interesting and unique host-guest interaction between fullerene and phthalocyanines, viz., free base phthalocyanine (H2-Pc) and zinc-phthalocyanine (Zn-Pc), in toluene medium. Ground state electronic interaction between these two supramolecules has been evidenced from the observation of well-defined charge transfer (CT) absorption bands in the visible region. Vertical ionization potentials of the phthalocyanines have been determined utilizing CT transition energy. Magnitude of degrees of CT reveals that, in the ground state, 2-4% CT takes place. Binding constants (K) for the fullerene/phthalocyanine complexes were determined from the fluorescence quenching experiment. Large K values in the ranges approximately 4.7 x 10(4) to 7.3 x 10(4) and 2.3 x 10(4) to 2.5 x 10(4) dm(3) x mol(-1) were obtained for the 1:1 fullerene complexes of Zn and H 2-Pc, respectively. Values of K suggest that both H 2- and Zn-Pc could not serve as an efficient discriminators between C60 and C70. Theoretical calculations as well as (13)C NMR studies establish that the orientation of C 70 toward phthalocyanine is favored in end-on orientation, which proves that interaction between fullerenes and phthalocyanines were governed by the electrostatic mechanism rather than dispersive forces associated with pi-pi interaction.  相似文献   

13.
The encapsulation of molecular hydrogen into an open-cage fullerene having a 16-membered ring orifice has been investigated. It is achieved by the pressurization of H2 at 0.6-13.5 MPa to afford endohedral hydrogen complexes of open-cage fullerenes in up to 83% yield. The efficiency of encapsulation is dominantly dependent on both H2 pressure and temperature. Hydrogen molecules inside the C60 cage are observed in the range of -7.3 to -7.5 ppm in 1H NMR spectra, and the formations of hydrogen complexes are further confirmed by mass spectrometry. The trapped hydrogen is released by heating. The activation energy barriers for this process are determined to be 22-24 kcal/mol. The DSC measurement of the endohedral H2 complex reveals that the escape of H2 from the C60 cage corresponds to an exothermic process, indicating that encapsulated H2 destabilizes the fullerene.  相似文献   

14.
Unusually intense near-infrared (near-IR) photoluminescence has been observed from mixed solutions of C70 and palladium octaethylporphyrin (PdOEP). The novel emission has a spectrum similar to C70 phosphorescence and an intensity that is approximately 20 times greater than that of C70 fluorescence. The emitting species is identified as a noncovalently bound, short-lived triplet exciplex of C70 with PdOEP. The emission is essentially C70 phosphorescence intensified by spin-orbit coupling from the Pd atom in the nearby metalloporphyrin. This supramolecular heavy atom effect increases the C70 emissive quantum yield to approximately 1 x 10(-2) in degassed hexane solution at room temperature. The radiative rate constant is enhanced by a factor of 10(5), to approximately 7 x 10(4) s(-1), which is a value that exceeds the phosphorescence rate constant of PdOEP. Comparative studies in a rigid poly(methyl methacrylate) (PMMA) matrix show that the excited state of the static C70-PdOEP complex decays in approximately 150 ns. A Job's plot analysis shows that the complex has a 1:1 stoichiometry. It forms dynamically in solution and is relatively weakly bound, with an estimated equilibrium constant near 100 M(-1). Qualitatively similar supramolecular heavy atom effects were also observed for complexes of PdOEP with C60 and fullerene derivatives.  相似文献   

15.
为了研究富勒烯金属包合物Be@C74的结构和电子性质,本文采用密度泛函理论B3LYP方法优化了Be@C74的结构,计算了它的势能面、LUMO-HOMO、电子亲和势、电子化能以及Mulliken集居数。结果表明:Be原子位于C74笼中心并且近似保持基态的电子构型;Be原子和C74笼之间是相互排斥作用;Be原子包入C74笼中心后,C74笼只有微小的变形;包合物Be@C74笼的给予和得到电力的能力与C74空笼几乎不变;Be与C74笼之间只有微小的杂化。  相似文献   

16.

Radiative cooling passively removes heat from objects via emission of thermal radiation to cold space. Suitable radiative cooling materials absorb infrared light while they avoid solar heating by either reflecting or transmitting solar radiation, depending on the application. Here, we demonstrate a reflective radiative cooler and a transparent radiative cooler solely based on cellulose derivatives manufactured via electrospinning and casting, respectively. By modifying the microstructure of cellulose materials, we control the solar light interaction from highly reflective (>?90%, porous structure) to highly transparent (≈ 90%, homogenous structure). Both cellulose materials show high thermal emissivity and minimal solar absorption, making them suitable for daytime radiative cooling. Used as coatings on silicon samples exposed to sun light at daytime, the reflective and transparent cellulose coolers could passively reduce sample temperatures by up to 15 °C and 5 °C, respectively.

  相似文献   

17.
We report the synthesis of two cyclic β-pyrrole unsubstituted meso-tetraphenyl bisporphyrins in which the porphyrin units are connected by two 2,3-hexadiynyl-1,6-dioxo or two hexyl-1,6-dioxo spacers, respectively. Both cyclic porphyrin dimers exist in solution as mixtures of two conformational isomers. In the solid state, the receptor with diynyl spacers forms a 1:1 complex with the icosahedral (I(h)) isomer of the trimetallic nitride endohedral fullerene Sc(3)N@C(80). In this complex the receptor adopts a scoop-shaped conformation having a dihedral angle of 87.25° between the two porphyrin planes. The hexyl spaced analogue, however, adopts a similar conformation upon encapsulation of one molecule of Sc(3)N@C(80) in a self-assembled dimeric capsule. The capsular complexes pack in columns and render the fullerene units completely isolated. In toluene solution, (1)H NMR experiments indicate that the endohedral fullerene Sc(3)N@C(80) is exclusively bound by the expanded isomer of both dimers. UV-vis and fluorescence titration experiments confirmed the existence of strong π-π interactions between the fullerene Sc(3)N@C(80) and the flexible bisporphyrin dimer with hexyl spacers. At micromolar concentration, the flexible receptor forms only a 1:1 complex with the endohedral fullerene with stability constant value of K(a) = 2.6 ± 0.3 × 10(5) M(-1).  相似文献   

18.
In this paper, we report negative ion microelectrospray Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry of C60 samples containing approximately 1% 3He@C60 or 4He@C60. Resolving He@C60- and 4He@C60- from C60 containing 3 or 4 13C instead of 12C atoms is technically challenging, because the target species are present in low relative abundance and are very close in mass. Nevertheless, we achieve baseline resolution of 3He@C60- from 13C3(12C57-) and 4He@C60- from 13C4(12C56-) in single-scan mass spectra obtained in broadband mode without preisolation of the ions of interest. The results constitute the first direct mass spectrometric observation of endohedral helium in a fullerene sample at this (low) level of incorporation. The results also demonstrate the feasibility of determining the extent of He incorporation from the FT-ICR mass spectral peak heights. The present measurements are in agreement with those obtained by the pyrolysis method [1-3]. Although limited in sensitivity, the mass spectral method is faster and easier than pyrolysis.  相似文献   

19.
A method for the synthesis of the multicomponent ionic complexes: [Cr(I)(C(6)H(6))(2) (.+)][Co(II)(tpp)(fullerene)(-)].C(6)H(4)Cl(2), comprising bis(benzene)chromium (Cr(C(6)H(6))(2)), cobalt(II) tetraphenylporphyrin (Co(II)(tpp)), fullerenes (C(60), C(60)(CN)(2), and C(70)), and o-dichlorobenzene (C(6)H(4)Cl(2)) has been developed. The monoanionic state of the fullerenes has been proved by optical absorption spectra in the UV/vis/NIR and IR ranges. The crystal structures of the ionic [[Cr(I)(C(6)H(6))(2)](.+)](1.7)[[Co(II)(tpp)(C(60))](2)](1.7-). 3.3 C(6)H(4)Cl(2) and [[Cr(I)(C(6)H(6))(2)] (.+)](2)[Co(II)(tpp)[C(60)(CN)(2)]](-)[C(60)(CN)(2) (.-)]).3 C(6)H(4)Cl(2) are presented. The essentially shortened Co.C(fullerene) bond lengths of 2.28-2.32 A in these complexes indicate the formation of sigma-bonded [Co(II)(tpp)][fullerene](-) anions, which are diamagnetic. All the ionic complexes are semiconductors with room temperature conductivity of 2 x 10(-3)-4 x 10(-6) S cm(-1), and their magnetic susceptibilities show Curie-Weiss behavior. The neutral complexes of Co(II)(tpp) with C(60), C(60)(CN)(2), C(70), and Cr(0)(C(6)H(6))(2), as well as the crystal structures of [Co(II)(tpp)](C(60)).2.5 C(6)H(4)Cl(2), [Co(II)(tpp)](C(70)). 1.3 CHCl(3).0.2 C(6)H(6), and [Cr(0)(C(6)H(6))(2)][Co(II)(tpp)] are discussed. In contrast to the ionic complexes, the neutral ones have essentially longer Co.C(fullerene) bond lengths of 2.69-2.75 A.  相似文献   

20.
The water-soluble endohedral gadofullerene derivatives, Gd@C(60)(OH)(x) and Gd@C(60)[C(COOH)(2)](10), have been characterized with regard to their MRI contrast agent properties. Water-proton relaxivities have been measured in aqueous solution at variable temperature (278-335 K), and for the first time for gadofullerenes, relaxivities as a function of magnetic field (5 x 10(-4) to 9.4 T; NMRD profiles) are also reported. Both compounds show relaxivity maxima at high magnetic fields (30-60 MHz) with a maximum relaxivity of 10.4 mM(-1) s(-1) for Gd@C(60)[C(COOH)(2)](10) and 38.5 mM(-1) s(-1) for Gd@C(60)(OH)(x) at 299 K. Variable-temperature, transverse and longitudinal (17)O relaxation rates, and chemical shifts have been measured at three magnetic fields (B = 1.41, 4.7, and 9.4 T), and the results point exclusively to an outer sphere relaxation mechanism. The NMRD profiles have been analyzed in terms of slow rotational motion with a long rotational correlation time calculated to be tau(R)(298) = 2.6 ns. The proton exchange rate obtained for Gd@C(60)[C(COOH)(2)](10) is k(ex)(298) = 1.4 x 10(7) s(-1) which is consistent with the exchange rate previously determined for malonic acid. The proton relaxivities for both gadofullerene derivatives increase strongly with decreasing pH (pH: 3-12). This behavior results from a pH-dependent aggregation of Gd@C(60)(OH)(x) and Gd@C(60)[C(COOH)(2)](10), which has been characterized by dynamic light scattering measurements. The pH dependency of the proton relaxivities makes these gadofullerene derivatives prime candidates for pH-responsive MRI contrast agent applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号