首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
密闭空间煤粉的爆炸特性   总被引:4,自引:0,他引:4  
高聪  李化  苏丹  黄卫星 《爆炸与冲击》2010,30(2):164-168
利用ISO6184/1和IEC推荐的20L球型爆炸测试装置,对4种规格的煤粉进行了系统的粉尘爆炸实验,探讨了煤粉的爆炸规律。得到了样品的爆炸下限浓度、最大爆炸压力,最大爆炸压力上升速率变化规律;分析了浓度、粒径、点火能量对煤粉爆炸猛烈度的影响。结果表明,粒径越小的煤粉,爆炸下限越小,而且在指定浓度下爆炸越猛烈。随着浓度的增大,最大爆炸压力和上升速率先增后减。样品3,峰值爆炸压力对应的浓度为400~1000g/m3,爆炸压力最大值为0.54MPa;点火头能量的增大在一定程度上促使反应更充分,从而爆炸强度更强。由于煤粉组成的特点,实验数据一定程度上说明了爆炸过程中气相燃烧的重要作用。 更多还原  相似文献   

2.

为了研究装置点火延迟时间对不同浓度粉尘爆炸压力和压力上升速率的影响,以铝粉为介质在5L圆柱形爆炸装置中进行系列爆炸实验。结果表明:装置点火延迟时间对铝粉爆炸压力和压力上升速率有十分显著的影响,且存在一个最佳点火延迟时间,此时最大爆炸压力最大;随着铝粉浓度的增加,最佳点火延迟时间先增加后保持不变。最佳点火延迟时间下的最大爆炸压力和最大压力上升速率明显高于点火延迟时间固定为60s时的。相对粉尘不同浓度均采用固定点火延迟时间,不同浓度时采用最佳点火延迟时间,所测得的粉尘最大爆炸压力和最大压力上升速率明显符合实际。

  相似文献   

3.

在20 L球形爆炸容器中对二甲醚/空气(DME/air)、二甲醚/空气/氩气(DME/air/Ar)混合物在不同初始状态下的爆炸特性进行实验研究,分析了不同初始压力、不同氩气(Ar)稀释浓度对爆炸极限、最大爆炸压力以及最大爆炸压力上升速率的影响。结果表明:DME/air混合物的最大爆炸压力和最大爆炸压力上升速率与DME在混合物中的浓度呈圆顶形关系,最大值出现在DME在混合物中的浓度为6.5%(即最佳当量比, φ=1)附近;初始压力的下降明显降低了DME/air混合物的爆炸上限,但对于其爆炸下限影响不显著;Ar的稀释对富燃DME/air混合物的最大爆炸压力和最大爆炸压力上升速率有显著的惰化作用,但对于贫燃DME/air混合物,最大爆炸压力和最大爆炸压力上升速率在一定的Ar稀释浓度范围内出现上升趋势,当Ar的稀释浓度大于20%,这2个爆炸参数值逐渐下降。

  相似文献   

4.
粉尘爆炸     
本文主要讨论粉尘爆炸机理及其防范。  相似文献   

5.
为了研究惰性粉体对油页岩粉尘爆炸火焰的抑制性能和作用机理,利用粉尘爆炸火焰传播测试系统,选取了五种常用惰性粉体和两种不同油页岩粉尘进行了爆炸火焰抑制实验。通过对爆炸火焰长度、最低惰化比和火焰形态结构的分析,结合惰性粉体的TG-DTG-DSC热特性曲线,系统研究了惰性粉体对油页岩粉尘爆炸火焰的抑制性能和作用机理。研究结果表明,惰性粉体对两种油页岩粉尘爆炸火焰的抑制性能优劣排序为:ABC干粉>Al(OH)3>Mg(OH)2>NaHCO3>岩粉,且两种惰性粉体均对桦甸油页岩(HDOS)的抑爆性能优于龙口油页岩(LKOS);本文建立了惰性粉体对油页岩粉尘爆炸火焰的抑制机理物理模型,并分析了作用机理,通过作用机理分析表明:高效抑爆粉体应具有热稳定性较好(分解温度在200~400 ℃),吸热量大,且分解中间态产物能够与燃烧反应活性自由基相结合发挥化学抑制作用等特点。  相似文献   

6.
为了研究不同湿度条件下低浓度甲烷-空气混合物爆炸特征,设计了饱和湿空气发生及储存装置,对管路、气囊和爆炸腔体进行温度控制和流量调节,实现了不同相对湿度的甲烷-空气混合气体的配置。采用20 L球形爆炸测试装置,分析不同相对湿度、甲烷浓度对混合物的最大爆炸压力、最大压力上升速率、爆炸下限及层流燃烧速度的影响。结果表明,随着相对湿度增大,最大爆炸压力和最大爆炸压力上升速率逐渐下降,且呈一定的线性关系。混合气体相对湿度从27.7%增大到80.1%时,甲烷爆炸下限从5.15%上升到5.25%,上升率1.9%,层流燃烧速度随相对湿度的增大也呈线性降低趋势。在本文条件下,相对湿度对甲烷-空气混合物的爆炸影响较小,这主要与常温常压下水蒸气的饱和分压力较低有关,但在高温高压时仍需考虑水蒸气含量的增大对混合气体爆炸特征的影响。  相似文献   

7.
为防控工业粉尘爆炸和完善粉尘爆炸测试方法,在Siwek20L球形爆炸测试系统内,实验研究了 不同点火能量下高、低挥发性粉尘的爆炸行为。对粉尘爆炸猛度(最大爆炸压力、最大升压速率和燃烧持续时 间)、敏感度(爆炸下限)及惰性介质的抑爆效力随点火能量的变化规律进行了重点探讨。结果表明,增加点火 能量能提高粉尘云爆炸能量和燃烧速率,低挥发性粉尘爆炸行为受点火能量的影响更显著。低挥发性粉尘在 低质量浓度下无法被低点火能量充分引燃,爆炸不良效应显著;随着粉尘质量浓度的增加,爆炸不良效应不 断减弱直至消失。低挥发性粉尘爆炸下限随点火能量增加急剧下降,而高挥发性粉尘爆炸下限受点火能量影 响较小。惰性介质抑爆效力随点火能量增加而下降。建议采用5~10kJ点火能量考察低挥发性粉尘爆炸下 限及惰性介质对粉尘爆炸的抑制效力。研究结果有助于理解粉尘爆炸规律、完善测试方法和安全设计。  相似文献   

8.
搭建了一套兼具承压和可视性能粉尘爆炸实验平台,在压力积聚工况下实验研究了石松子粉尘爆炸火焰传播特性。实验结果表明:压力积聚工况下的石松子粉尘爆炸火焰呈现空间离散的束状结构,火焰锋面呈齿状。随着粉尘浓度的提升,火焰连续性增强,锋面趋于平滑,亮度增加,并在750g/m^3达到最佳。不同浓度条件下的石松子粉尘爆炸火焰在传播过程中均呈现明显的速度脉动特征,但脉动频率随粉尘浓度的增大而减小。爆炸火焰平均传播速度随粉尘浓度的增大先增大后减小,并在750g/m^3达到最高。不同浓度条件下的石松子粉尘爆炸火焰前期传播速度均高于后期传播速度。  相似文献   

9.
采用20 L近球形爆炸实验系统对锆粉尘云的爆炸特性开展了实验研究,分别分析了初始点火能量、点火延迟时间、粉尘云浓度3种因素对锆粉尘云爆炸强度的影响,揭示了锆粉尘云在密闭容器中的爆炸特性。在本实验条件下,结果表明:初始点火能量对锆粉尘云最大爆炸压力有显著影响,锆粉尘云最大爆炸压力随初始点火能量的增大而增大;随点火延迟时间的增加,锆粉尘云最大爆炸压力先增大后减小,存在最佳点火延迟时间;随粉尘云浓度的增大,锆粉尘云最大爆炸压力先增大后减小,存在最佳锆粉尘云浓度,得到锆粉尘云的爆炸下限为18~20 g/m3。  相似文献   

10.
以2m 铝粉为介质,在内径68mm、高305mm 的钢制圆柱容器顶端连接内径25mm、不同长度的钢制泄爆管,开展了粉尘爆炸泄放实验。通过分别改变泄爆管长度及粉尘的质量浓度,研究粉尘爆炸泄放过程中容器及泄爆管内的压力特性,重点在探索泄放过程中二次爆炸发生的条件。结果表明,在本实验条件下,当泄爆管长度LT1500mm,粉尘质量浓度500g/m3 时,泄爆管内发生二次爆炸的几率很高。二次爆炸产生的压力波分别向爆炸容器及泄爆管末端2个方向传播。向爆炸容器传播的压力波阻碍并扰乱泄放过程,导致容器内残余未燃粉尘反应,使容器内压力出现二次峰值。  相似文献   

11.

在矩形管道粉尘爆炸装置中开展系列实验,系统研究了点火延迟时间、粉尘粒度及粉尘浓度对铝粉尘爆炸过程中最大爆炸压力和最大爆炸压力上升速率的影响。研究结果表明:不同的点火延迟时间对铝粉尘爆炸压力有显著影响,随着点火延迟时间由小变大,最大爆炸压力和最大爆炸压力上升速率呈现先增大后减小的趋势,且不同粒径的铝粉尘最大爆炸压力对应有不同点火延迟时间。随铝粉粒度的减小,最大爆炸压力和最大爆炸压力上升速率会呈现出先增大后减小的变化规律。铝粉最大爆炸压力和最大爆炸压力上升速率随浓度的增加均表现为先变大后减小的趋势,即铝粉浓度在特定数值时会使其爆炸威力最强。

  相似文献   

12.
镁粉尘云最低着火温度的实验测试   总被引:1,自引:0,他引:1  
采用标准装置Godbert-Greenwald恒温炉测试了不同条件下镁粉尘云最低着火温度。实验测试结果显示:D50为6、47、104、173 m时镁粉尘云最低着火温度分别为480、520、620、700 ℃;选取D50为6 m的镁粉,在分散压力恒定为0.1 MPa时,镁粉浓度由424 g/m3变化到5 085 g/m3,粉尘云最低着火温度由600 ℃降低到480 ℃;而粉尘质量恒定为0.3 g时,分散压力从0.1 MPa增加到0.2 MPa,粉尘云最低着火温度由540 ℃升高到580 ℃。还分析了镁粉粒径、浓度及分散压力对粉尘云最低着火温度的影响。  相似文献   

13.
建立了顶部含有弱约束结构的受限空间油气爆炸实验系统,并对含有弱约束的受限空间中油气爆炸特性进行实验研究,获得超压变化规律及火焰发展特征。结果表明:(1)容器内部超压受泄流、外部爆炸、火焰扩张等因素的影响,出现多个峰值,并伴以强烈的振荡;容器外部超压随着距离的增大而减小,且竖直方向超压大于水平方向超压。(2)与无约束爆炸相比,弱约束结构对爆炸的影响主要体现在对爆炸超压的增强效应和对爆炸发展速率的滞后效应。(3)爆炸超压随着油气体积分数的增加先增大后减小,最大超压所对应的初始油气体积分数为1.79%。(4)容器外火焰发展过程分为初级燃烧阶段、过渡燃烧阶段、次级燃烧阶段,由于受Rayleigh-Talor不稳定、Helmholtz不稳定、斜压效应的影响,火焰出现褶皱和卷曲,最大火焰高度和直径分别为0.8和0.55 m。  相似文献   

14.
为研究不同变质程度煤尘爆炸压力特性变化规律,以最大压力pmax和最大压力上升速率(dp/dt)max表征压力特性,使用近球形煤尘爆炸装置对褐煤、长焰煤、不黏煤和气煤的爆炸压力特性变化规律展开分析。研究发现:在4种煤尘样品中,褐煤的pmax和(dp/dt)max均最大,分别达0.71 MPa和65.69 MPa/s。随变质程度增大,长焰煤、不黏煤和气煤的pmax和(dp/dt)max均明显减小,说明以爆炸压力特性为标准,4种煤尘爆炸强度由高到低依次是褐煤、长焰煤、不黏煤和气煤。通过对比爆炸前后煤尘挥发分含量,得出参与爆炸的挥发分含量所占质量分数为46.28%~68.19%。在喷尘压力 p0=2.0 MPa,点火延迟时间t0=100 ms时,4种煤尘pmax值均达最大,分别为0.71、0.60、0.55和0.47 MPa。褐煤、不黏煤和气煤在 p0=2.0 MPa,t0=80 ms时(dp/dt)max达最大,而长焰煤则在 p0=2.0 MPa,t0=100 ms时(dp/dt)max达到最大。  相似文献   

15.
针对不同环境温度对瓦斯爆炸压力及最大压力上升速率的影响进行实验。研究表明,在其他条件不变的情况下,随着环境温度的增加最大爆炸压力逐渐减小,且最大爆炸压力与环境温度的倒数呈现线性衰减规律;随着环境温度的升高,化学反应速率增加,爆炸压力达到峰值所需的时间减少;瓦斯气体的最大压力上升速率随环境温度的升高呈非线性变化规律,在环境温度为298~473 K的范围内,最大压力上升速率基本不变。这些规律性的结论可为防治矿井瓦斯爆炸事故和煤层气的安全利用提供理论基础。  相似文献   

16.
针对油页岩原位注热开采过程中储层有效热解区变化规律不清,实际热解效果无法准确判断难题,采用数值模拟方法,以抚顺油页岩储层为研究对象,建立了油页岩原位注热开采热流固耦合力学模型,与前人结果对比,验证了模型可靠性。重点考察水力压裂裂缝通道短路问题,分析得到了油页岩原位注热开采过程中储层有效热解区、储层有效热解区中地应力、注汽压力及沉降量随注热时间变化规律。结果表明,过热蒸汽沿水力压裂裂缝流动不会出现裂缝通道短路现象,过热蒸汽可通过水力压裂裂缝加速油页岩储层热解;采用过热蒸汽对流加热油页岩储层效率高,只需1年能使96%的油页岩储层达到热解所需温度;油页岩储层有效热解区中部形成应力集中区,最大地应力为21.6 MPa;热解后靠近注热井处岩层发生沉降,热解2年后最大沉降量达0.85 m。所得结论对现场油页岩原位注热开采有参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号