首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of EuCl3 on the aggregation processes of sodium dodecyl sulfate was investigated. Electrical conductivity data, combined with Eu(III) luminescence measurements, suggest that the formation of micelles involving EuCl3 and SDS occurs at low SDS concentration; the formation of these mixed aggregates was also monitored by light scattering, which indicates that the addition of EuCl3 to SDS concentration at values below the critical micelle concentration of the pure surfactant results in a much higher light scattering than that found just with SDS micelles. It was also found that the Eu(III)/DS- complexes are formed with a binding ratio which varies between 20 and 4, depending on the initial concentration of Eu(III). As the concentration increases, turbidity occurs initially, but solutions become clear subsequently. In contrast to the behavior of SDS in the presence of aluminum(III), no flocculation was observed. From the analysis of electrical conductivity data and comparison with other systems, it is suggested that growth of aggregates happens, probably with formation of nonspherical systems. At the highest concentrations these may involve just Eu(III) and DS- ions. The effect of temperature on the SDS micellization process was studied. The calculated free energy of SDS micellization is not dependent on the initial EuCl3 but is dependent on the final balance between the presence of counterions in solution (ionic strength) and the temperature.  相似文献   

2.
The effect of TbCl3 on the aggregation processes of the anionic surfactants sodium decyl sulfate (SDeS) and sodium dodecyl sulfate (SDS) has been investigated. Electrical conductivity data, combined with Tb(III) luminescence measurements suggest that the formation of micelles involving TbCl3 and SDS occurs at concentrations below the critical micelle concentration (cmc) of the pure surfactants; the formation of these mixed aggregates was also monitored by light scattering, which indicates that the addition of TbCl3 to surfactant concentration at values below the pure surfactant cmc results in a much greater light scattering than that found with pure sodium alkylsulfate surfactant micelles. This phenomenon is dependent upon the alkyl chain length of the surfactant. With Tb(III)/DS-, complexes are formed with a cation/anion binding ratio varying from 3 to 6, which depends upon the initial concentration of Tb(III). This suggests that the majority of the cation hydration water molecules can be exchanged by the anionic surfactant. When the carbon chain length decreases, interactions between surfactant and Tb(III) also decrease, alterations in conductivity and fluorescence data are not so significant and, consequently, no binding ratio can be detected even if existing. The surfactant micellization is dependent on the presence of electrolyte in solution with apparent cmc being lower than the corresponding cmc value of pure SDS.  相似文献   

3.
Classical physical method has been applied in the present study of interaction between water soluble polymer with anionic dimeric and conventional anionic surfactants. Micellization activity of carboxylate-based anionic dimeric (CAD) as well as sodium dodecyl sulfate (SDS) surfactants in the presence of nonionic polymer, that is, polyvinylpyrrolidone (PVP), has been studied through conductometric and surface tensiometric measurements. From these methods the critical aggregation concentrations (CACs), critical micelle concentrations (CMCs), and the effective degree of counterion binding (β) were determined. For the evaluation of behavior of CAD toward the PVP various thermodynamic properties viz. standard Gibbs energy of micellization, standard enthalpy, and entropy of micellization of CAD/PVP mixed system have also been estimated and discussed. The results exhibit that anionic dimeric surfactant interacts strongly with PVP as compared to conventional surfactant.  相似文献   

4.
The interaction of nonionic diblock copolymer poly(ethylene oxide butylene oxide) (E62B22) with a cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and anionic surfactant sodium dodecyl sulphate (SDS) were studied using surface tension, conductivity, and dynamic laser light scattering techniques. Surface tension measurements were used to determine critical micelle concentration and thereby its free energy of adsorption (ΔGads), free energy of micellization (ΔGm), surface excess concentration (Γ), and minimum area per molecule (A). Conductivity measurements were used to determine critical micelle concentration (CMC) critical aggregation concentration (CAC) at different temperatures, enthalpy of micellization (ΔHm), free energy of micellization and entropy of micellization (ΔSm). Changes in physicochemical properties of the micellized block copolymer were studied by using dynamic laser light scattering. The effect of surfactant on the size and properties of block copolymer has also been discussed.  相似文献   

5.
CnNCl和SDS在水溶液中的相互作用;滴定式微量热法; 烷氧基羟丙基三甲基氯化铵; 十二烷基硫酸钠;胶束;疏水作用  相似文献   

6.
The critical micelle concentration (cmc) of sodium dodecyl sulfate was determined in water + acetamide media from 0 to 70 wt% of acetamide and at temperatures in the range from 20 to 40 degrees C by using conductance, surface tension, and fluorescence methods. The cmc increases with increase in acetamide concentration and the reported [M.S. Akhter, Colloids Surf. A 121 (1997) 103] decrease in cmc was not observed. The limiting surface tension at the cmc does not have any dependence on the amount of acetamide added. The cmc data as a function of temperature were used to estimate the free energy, enthalpy, and entropy terms for micellization. Enthalpy-entropy compensation takes place during micellization. Counterion binding constant, surface excess, and aggregation number of SDS decrease with increasing acetamide concentration and become almost constant for weight percentages of acetamide greater or equal to 30. Pyrene appears to move from the interior of the SDS micelle to the micellar interface at about 30 wt% acetamide. The empirical relations reported by Aguiar et al. [J. Aguiar, P. Carpena, J.A. Molina-Bolivar, C. Carnero Ruiz, J. Colloid Interface Sci. 258 (2003) 116] between the parameters of a sigmoid-type expression for the ratio of fluorescence emission intensities of pyrene and surfactant properties are found to be applicable to SDS in water + acetamide medium below 20 wt% acetamide only. Standard free energy of micellization has linear correlations with reciprocal of dielectric constant and Gordon parameter of the solvent. The water + acetamide medium behaves similar to mixed solvents containing water and any polar liquid nonaqueous solvent and this study highlights the significance of solvophobicity.  相似文献   

7.
Isothermal titration calorimetry (ITC) is a sensitive research tool for examining the binding interactions between surfactant and polymer where the differential enthalpy during the binding process is monitored. In addition to the critical micelle concentration (cmc) and the micellization enthalpy (deltaHm), the effective micellar charge fraction (beta) of the ionic surfactant micellization process can also be determined from ITC thermograms. Poly(propylene glycol) (PPG) exhibits a lower critical solution temperature (LCST) ranging from 15 to 42 degrees C, depending on the molecular weights. We report, for the first time, the binding interactions between sodium dodecyl sulfate (SDS) and 1,000, 2,000 and 3,000 Da PPGs, where different binding mechanisms are in operation, depending on the temperature. At temperatures lower than the LCST, the binding interactions are similar to those of SDS and low molecular weight poly(ethylene glycol)s (MW < 3500 Da). At temperatures greater than the LCST, the binding interactions are dominated by direct solubilization of PPG chains into mixed micellar cores. At temperatures near the LCST, the binding interactions are controlled by the balance ofthe PPG solubilization at low SDS concentrations and polymer-induced micellization at high SDS concentrations.  相似文献   

8.
The effect of glycerol on both micellar formation and the structural evolution of the sodium dodecyl sulfate (SDS) aggregates in the context of the action mechanism of the cosolvent has been studied. The critical micelle concentration and the degree of counterion dissociation of the surfactant over a temperature range from 20°C to 40°C were obtained by the conductance method. The thermodynamic parameters of micellization were estimated by using the equilibrium model of micelle formation. The analysis of these parameters indicated that the lower aggregation of the surfactant is mainly due to a minor cohesive energy of the mixed solvent system in relation to the pure water. The effect of glycerol on the mean aggregation number of the micelles of SDS was analyzed by the static quenching method. It was found that the aggregation number decreased with the glycerol content. This reduction in the micellar size seems to be controlled by an increase in the surface area per headgroup, which was ascribed to a participation of glycerol in the micellar solvation layer. Studies on the micropolarity of the aggregates, as sensed by the probe pyrene, indicated that this microenvironmental parameter is almost unaffected by the presence of glycerol in the mixture. However, an increase in the micellar microviscosity at the surface region was observed from the photophysical behavior of two different probes, rhodamine B and auramine O. These results suggest a certain interaction of the cosolvent in the micellar solvation of SDS micelles.  相似文献   

9.
The effect of sodium dodecyl sulfate (SDS) on the micellization and aggregation behavior of a poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO) amphiphilic copolymer (Pluronic L64: EO13 PO30 EO13) have been investigated by various techniques like, cloud point, viscosity, isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), fluorescence spectroscopy, room temperature phosphorescence (RTP), and small angle neutron scattering (SANS). Addition of SDS in L64 solutions shows mark alteration of different properties. We observed synergistic interaction between SDS and Pluronic L64. The changes in the critical micelle concentration (CMC), critical micelle temperature (CMT), cloud point (CP), micelle size, and shape has been correlated and reported in terms of structure dynamics and mechanics. The ITC titrations have been used to explore the different stages of binding and interactions of SDS with L64. The enthalpies of aggregation for copolymer-SDS aggregates binding, organizational change of bound aggregates, and the threshold concentrations of SDS in the presence of copolymer were estimated directly from ITC titration curves. The effect of temperature on enthalpy values has been reported in terms of different aggregation state. Fluorescence and RTP for L64 were used to investigate the change in micellar environment on the addition of SDS at different temperature. Appearance and shifting of SANS peaks have been used to monitor the size and inter micellar interaction on addition of SDS in L64 solution. Cloud point and viscosity elaborate the penetration of SDS molecule in L64 micelle and hence changing the micellar architect.  相似文献   

10.
Thermodynamic properties of sodium dodecyl sulfate (SDS) in micellar aqueous solutions of L-serine and L-threonine were determined by fluorescence spectroscopy and dynamic light scattering techniques. The values of Gibbs free energy, enthalpy and entropy of the process of micelle formation were calculated using the critical micelle concentration and degree of dissociation. Changes in critical micelle concentration of SDS with the addition of amino acids were examined by both conductivity and pyrene I 1/I 3 ratio methods at different temperatures. The pyrene fluorescence spectra were used to study the change of micropolarity produced by the interaction of SDS with amino acids. The aggregation behavior of SDS was explained in terms of structural changes in mixed solutions. The data on dynamic light scattering suggest that size of SDS micelles was influenced by the presence of amino acids.  相似文献   

11.
The micellization of the ionic surfactant sodium dodecyl sulfate (SDS) has been investigated in the presence of neutral cyclodextrins by means of capillary electrophoresis (CE). The measurements of electric current allowed the determination of the critical micelle concentration of SDS in the presence of α-, β- and γ-cyclodextrin, and of (2-hydroxypropyl)-β-cyclodextrin and (2,6-di-O-methyl)-β-cyclodextrin. Measurements of the CE current also yields information on the binding of SDS by cyclodextrins. The results are supported by electronic paramagnetic resonance spectroscopy and suggest that the methylated cyclodextrin affects the micellization of SDS in an unconventional way compared to other considered cyclodextrins. The combination of SDS with methylated cyclodextrin can have a profound effect on the reliable application of cyclodextrin-modified micellar electrokinetic chromatography.  相似文献   

12.
Mixed micelles of sodium dodecyl sulfate (SDS) and poly(propylene oxide) methacrylate (PPOMA) have been studied in the presence of acrylamide using conductimetry, fluorescence spectroscopy, and small-angle neutron scattering (SANS) under the following conditions: (i) the SDS-acrylamide binary system in water; (ii) the SDS-acrylamide-PPOMA ternary system in water. The addition of acrylamide in SDS solutions perturbs the micellization of the surfactant by decreasing the aggregation number of the micelles and increasing their ionization degree. The variations of the various micellar parameters versus the weight ratio R=PPOMA/SDS are different in the presence of acrylamide or in pure water. These differences are much more pronounced for the lower than for the higher PPOMA concentrations. There is competition between acrylamide and PPOMA and at higher PPOMA concentration, acrylamide tends to be released from SDS micelles and is completely replaced by PPOMA.  相似文献   

13.
Micellar behavior of binary combinations of ionic liquid, 1-tetradecyl-3-methylimidazolium bromide, with conventional cationic surfactant 1-hexadecylpyridinium bromide was investigated by means of conductometry to study the effect of cosolvent and water content and temperature. The critical micelle concentration and the degree of counterion association were calculated from the conductometry data. Thermodynamic parameters were obtained from the temperature dependence of the critical micelle concentration. The standard Gibbs energy of micellization increased with the increasing percentage of cosolvent as well as the mole fraction of C14mimBr. The standard enthalpy and standard entropy of micelle formation were both decreased with the increasing temperature and the concentration of cosolvent. The entropy contribution was larger than the enthalpic one in pure water, whereas in the ethylene glycol/H2O mixture the enthalpy contribution was predominant  相似文献   

14.
Electrical conductivity of aqueous solutions of tetradecylpyridinium bromide and chloride has been measured as a function of surfactant molal concentration and temperature. From the molal dependence of conductivity, the critical micelle concentration and the micellar ionization degree were estimated. The temperature dependence of these parameters has been used for calculating the thermodynamic parameters related with the micellization process by using the classical charged pseudophase separation model. The effect of the counterion on the conventional thermodynamic potentials of micellization such as standard Gibbs free energy, enthalpy and entropy has also been a matter of study. Finally, the occurrence of the enthalpy–entropy compensation phenomenon was verified and the relevant parameters discussed.  相似文献   

15.
本文介绍以YWG-C_(18)为固定相,十二烷基硫酸钠(SDS)胶束溶液为移动相,探讨了SDS浓度和柱温对胶束反相高效液相色谱分离最佳化的影响。测定了胶束体系中苯胺的热力学函数ΔH~0值及SDS的临界胶束浓度(C.M.C.),还讨论了非极性和极性溶质的保留机理。  相似文献   

16.
The aggregation behaviour of tetradecyltrimethylammonium bromide in ethylene glycol–water mixtures across a range of temperatures has been investigated by electrical conductivity measurements. The critical micelle concentration (cmc) and the degree of counterion dissociation of micelles were obtained at each temperature from plots of differential conductivity, (κ/c) T , P , versus the square root of the total concentration of the surfactant. This procedure not only enables us to determine the cmc values more precisely than the conventional method, based on plots of conductivity against total concentration of surfactant, but also allows straightforward determination of the limiting molar conductance and the molar conductance of micellar species. The equilibrium model of micelle formation was applied to obtain the thermodynamics parameters of micellization. Only small differences have been observed in the standard molar Gibbs free energies of micellization over the temperature range investigated. The enthalpy of micellization was found to be negative in all cases, and it showed a strong dependence on temperature in the ethylene glycol poor solvent system. An enthalpy–entropy compensation effect was observed for all the systems, but whereas the micellization of the surfactant in the solvent system with 20 wt% ethylene glycol seems to occur under the same structural conditions as in pure water, in ethylene glycol rich mixtures the results suggest that the lower aggregation of the surfactant is due to the minor cohesive energy of the solvent system in relation to water. Received: 13 December 1998 Accepted in revised form: 25 February 1999  相似文献   

17.
Aggregation behavior of dodecyldimethyl-N-2-phenoxyethylammonium bromide commonly called domiphen bromide (DB) was studied in aqueous solution. The Krafft temperature of the surfactant was measured. The surfactant has been shown to form micellar structures in a wide concentration range. The critical micelle concentration was determined by surface tension, conductivity, and fluorescence methods. The conductivity data were also employed to determine the degree of surfactant counterion dissociation. The changes in Gibb's free energy, enthalpy, and entropy of the micellization process were determined at different temperature. The steady-state fluorescence quenching measurements with pyrene and N-phenyl-1-naphthylamine as fluorescence probes were performed to obtain micellar aggregation number. The results were compared with those of dodecyltrimethylammonium bromide (DTAB) surfactant. The micelle formation is energetically more favored in DB compared to that in DTAB. The 1H-NMR spectra were used to show that the 2-phenoxyethyl group, which folds back onto the micellar surface facilitates aggregate formation in DB.  相似文献   

18.
Micelle formation of N-(1,1-dihydroperfluorooctyl)-N,N,N- and N-(1,1-dihydroperfluorononyl)-N,N,N-trimethylammonium chloride was investigated by analyzing the concentration dependence of the electric conductivity and of the activity of the counterion (Cl(-)) of the solution. The three micellization parameters for ionic surfactants, the micellization constant K(n), the micelle aggregation number n, and the number of counterions per micelle m, were determined by combination of electric conductivity and counterion concentration. The present analysis employed two slopes of the plots of specific conductivity against surfactant concentration below and above the critical micelle concentration and the mass action model of micelle formation. The aggregation numbers thus obtained were relatively small, while the degrees of counterion binding to the micelle (m/n) were found to be quite large, much larger than expected from the small aggregation numbers. Thermodynamical parameters of the micellization were evaluated from the temperature dependence of the three parameters, and the micellization of the fluorinated surfactant was found to be enthalpy-driven. A CF(2) group in the perfluorocarbon chain was found to be 1.44 times larger in hydrophobicity for micellization than a CH(2) group in the hydrocarbon chain.  相似文献   

19.
The interaction of hydrophobic chitin and chitosan with sodium dodecyl sulfate (SDS) has been studied by titration calorimetry at 298.15K. The nature of interaction of the surfactant and biopolymers was followed by enthalpy interaction profiles. The mixing enthalpy curves were determined by mixing SDS solutions above their critical micelle concentration with chitin and chitosan suspensions in different concentrations. The Gibbs free energy of aggregation values were -23.21, -22.71 and -21.53 kJ mol(-1) for chitin in 0.02, 0.05 and 0.1% concentration, respectively, and 28.30, 24.38 and 24.20 kJ mol(-1) for chitosan in 0.02, 0.05 and 0.1% concentration, respectively. The critical aggregation concentration (cac) obtained by calorimetric data gave 6.32, 7.07 and 9.14 mmol kg(-1) in 0.02, 0.05 and 0.1% concentration, respectively, for chitin and 2.09, 4.91 and 5.11 mmol kg(-1) for chitosan in 0.02, 0.05 and 0.1% concentration, respectively.  相似文献   

20.
Critical micelle concentration (CMC) of sodium dodecyl sulfate (SDS), an anionic surfactant, has been investigated in aqueous solutions of a variety of room temperature ionic liquids (RTILs): 1,3-dimethylimidazolium iodide (Me2IM-I, 2), 1-butyl-3-methylimidazolium chloride (BMIM-Cl, 3), 1-hexyl-3-methylimidazolium chloride (HxMIM-Cl, 4), 1-methyl-3-octylimidazolium chloride (MOIM-Cl), 5, and 1-methyl-3-octylimidazolium tetrafluoroborate (MOIM-BF4, 6). The CMC of SDS is shown to correlate with the nature of the alkyl groups in the RTILs; SDS showed appreciably higher CMCs in presence of ionic liquids 2 and 3, whereas in the presence of ionic liquids 4, 5, and 6 much smaller CMCs were observed. The nature of the gigenions, Cl- or BF4-, has no noticeable effect on the observed CMC values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号