首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The structure transformation occurring in fullerene film under bombardment by 50 keV C60+ cluster ions is reported. The Raman spectra of the irradiated C60 films reveal a new peak rising at 1458 cm−1 with an increase in the ion fluence. This feature of the Raman spectra suggests linear polymerization of solid C60 induced by the cluster ion impacts. The aligned C60 polymeric chains composing about 5–10 fullerene molecules have been distinguished on the film surface after the high-fluence irradiation using atomic force microscopy (AFM). The surface profiling analysis of the irradiated films has revealed pronounced sputtering during the treatment. The obtained results indicate that the C60 polymerization occurs in a deep layer situated more than 40 nm below the film surface. The deep location of the C60 polymeric phase indirectly confirms the dominant role of shock waves in the detected C60 phase transformation.  相似文献   

2.
The stability of a C20@C80 nanoparticle and the rotation of its inner shell are studied theoretically within the tight-binding approximation. It is found that the C20 skeleton in the free state is described by space group D3d; in the case where C20 is placed into the C80(I h ) fullerene field, the space group of C20 is raised to I h due to isomerization. The total energy surface of the C20@C80 compound is scanned over two rotation angles. Based on an analysis of the surface relief and energy isoline map, orientational melting of the nanoparticle is predicted. A nanoparticle gyroscope—C20 rotating in the field of C80 at a certain relative orientation and energy supply—is also predicted to exist.  相似文献   

3.
Non-stoichiometric Cu2ZnSnS4 nanoparticles with average diameters of 4–15 nm and quasi-polyhedral shape were successfully synthesized by a colloidal method. We found that a non-stoichiometric composition of Zn to Cu in Cu2ZnSnS4 nanoparticles yielded a correlation where Zn content increased with a decrease in Cu content, suggesting formation of lattice defects relating to Cu and Zn, such as a Cu vacancy (VCu), antisite with Zn replacing Cu (ZnCu), and/or defect cluster of VCu and ZnCu. The bandgap energy of Cu2ZnSnS4 nanoparticles systematically varies between 1.56 and 1.83 eV depending on the composition ratios of Cu and Zn, resulting in a wider bandgap for Cu-deficient Cu2ZnSnS4 nanoparticles. These characteristics can be ascribed to the modification in electronic band structures due to formation of VCu and ZnCu on the analogy of ternary copper chalcogenide, chalcopyrite CuInSe2, in which the top of the valence band shifts downward with decreasing Cu contents, because much like the structure of CuInSe2, the top of the valence band is composed of a Cu 3d orbital in Cu2ZnSnS4.  相似文献   

4.
The effect of heating of the electronic subsystem on the thermal stability of C60 and C20 fullerenes and a (C20)2 cluster molecule is investigated theoretically. It is demonstrated that the excitation of electrons to upper energy levels in accordance with the Fermi-Dirac distribution function does not lead to a substantial change in the activation energy E a for decay of the C20 fullerene. The stability of the C60 fullerene and the (C20)2 cluster molecule likewise does not change radically. However, the inclusion of corrections associated with the finite sizes of the heat bath leads to the activation energy E a which is in better agreement with the calculated height of the potential barrier preventing the cluster decay.  相似文献   

5.
The dynamics of the adsorption and evolution of fluorinated C60F18 fullerene molecules on the Cu(001) surface are studied by real-time ultra-high vacuum scanning tunneling microscopy. Fluorinated fullerene molecules are shown to decompose with time on the Cu(001) surface transforming to C60 molecules. The decay rate depends on the initial molecular coverage. The rapid decay of fluorinated fullerene molecules is observed when the coverage is no higher than 0.2 single layers. As a result, two-dimensional islands consisting of pure C60 molecules are formed on the Cu(001) surface. 2D islands consisting of fluorinated fullerene molecules are formed when the initial molecular coverage is higher than 0.5 single layers. The molecules inside these islands also tend to decompose with time. It is found experimentally that fluorine atoms are removed completely from the initial C60F18 molecules adsorbed on the Cu(001) surface after 250 h when the initial molecular coverage is 0.6 single layers.  相似文献   

6.
The low energy deposition of silver cluster cations with 561 (±5) atoms on a cold fullerene covered gold surface has been studied both by scanning tunneling microscopy and molecular dynamics simulation. The special properties of the C60/Au(111) surface result in a noticeable fixation of the clusters without a significant change of the cluster shape. Upon heating to room temperature we observe a flattening or shrinking of the cluster samples due to thermal activation. Similar changes were observed also for mass selected Ag clusters with other sizes. For comparison we also studied Ag islands of similar size, grown by low temperature deposition of Ag atoms and subsequent annealing. A completely different behavior is observed with much broader size distributions and a qualitatively different response to annealing.  相似文献   

7.
8.
The equilibrium and photoinduced absorption spectra of copper-and silver-doped Bi12SiO20 crystals are studied. It is demonstrated that the impurity absorption is due to Ag2+, Ag+, Cu3+, Cu2+, and Cu+ ions occupying almost octahedral Bi3 positions. A mechanism of photochromism is suggested, involving changes in the charge states of copper and silver impurity ions according to schemes Cu2+-e → Cu3+ and Ag+-e → Ag2+.  相似文献   

9.
10.
Ti42.5Zr7.5Cu40Ni5Sn5 bulk metallic glass with a critical diameter of 4 mm was fabricated by the conventional copper mould casting method. The supercooled liquid region ΔT x, reduced glass transition temperature T rg, γ parameter, and δ parameter of the alloy were measured to be 63.9 K, 0.561, 0.393, and 1.400, respectively, implying that the alloy has an excellent glass-forming ability. The bulk metallic glass exhibits high compressive fracture strength of 2162 MPa with distinct plastic strain of 0.9%. The fracture surface consists mainly of vein-like patterns, typical of bulk glassy alloys. Supported by the Program for New Century Excellent Talents in University of China and the National Natural Science Foundation of China (NSFC)(Grant No. 50771040)  相似文献   

11.
It is discovered that the electron paramagnetic resonance (EPR) spectrum of the doubly charged copper centers occurs in single crystals of Pb5Ge3O11 doped with gadolinium or iron after annealing in an atmosphere containing chlorine and bromine. Similar annealing of the crystals doped with copper in a chlorine and fluorine atmosphere leads to redistribution of the intensities of the EPR spectra of two types of Cu2+ centers. The influence of annealing on the ongoing intensity of spectra of the dimeric triclinic centers Fe3+–A, Gd3+–A (where A represent Cl?, Br?, O2?, F?) was the subject of this research. Consideration is given to the mechanisms for changing the charge state and association of copper center with defects.  相似文献   

12.
The atomic dynamics of an Al0.62Cu0.255Fe0.125 icosahedral quasicrystal is investigated using inelastic neutron scattering (the isotopic contrast method). The partial vibrational spectra of copper, iron, and aluminum atoms in the icosahedral quasicrystal and the total spectrum of thermal vibrations of the compound are directly reconstructed from the experimental data for the first time. It is found that the vibrational energies of copper and iron atoms fall in relatively narrow ranges near 16 and 30 meV, respectively, whereas the vibrational energies of aluminum atoms lie in a wide range (up to 60 meV).  相似文献   

13.
The barriers to relative shell rotation and other energy characteristics of C60@C240 two-shell carbon nanoparticles (“onions”) with outer shells of different shapes are calculated. The disturbance of the orientational order in the mutual arrangement of shells with an increase in temperature (orientational melting) is studied by the molecular dynamics method. The intershell orientational diffusion is represented by the Arrhenius relationship, and the Arrhenius parameters are calculated numerically. A definition is proposed for the temperature of short-range order disturbance in systems that undergo melting without structural change. The calculated temperature of orientational melting of the C60@C240 nanoparticle is approximately equal to 60 K.  相似文献   

14.
The photopolymerization of C60 and Li@C60 films was investigated by means of optical second-harmonic generation. The films were deposited under ultra-high-vacuum conditions and irradiated in situ with an Ar+ laser at 514 nm. The second harmonic generated by a Nd:YAG laser working at 1064 nm was monitored after different steps of irradiation. Photopolymerization was observed after very low irradiation doses, of the order of 1020 photons/cm2, and confirmed with infrared absorption spectroscopy. Similar kinetics for C60 and Li@C60 were observed. The measurements give evidence for photopolymerization of the endohedral fullerene Li@C60. PACS 78.30.Na; 82.50.Hp; 81.05.Tp  相似文献   

15.
A semi-empirical molecular dynamics model is developed. The central collisions of C60+C60 and He@C60+He@C60 at different incident energies are investigated based on this model. It is found that the dimer structures have been produced at proper incident energies and these fullerene dimers could be formed by a self-assembly of C60 fullerene and He@C60. The He atom has a significant effect at higher incident energy and this embedded He atom can enhance the stability of the dimer structure.  相似文献   

16.
A comparative analysis of the stability factors and electronic structure of two possible crystalline forms of small fullerene C28 and endohedral fullerene Zn@C28 with diamond and lonsdaleite structures is performed using a cluster model. Atoms of elements that, when placed inside C28 cages, have no significant effect on the stability of free small-fullerene molecules are shown to be able to dramatically change the electronic properties and reactivity of the C28 skeleton and to be favorable for forming small-fullerene crystalline modifications, which are covalent crystals. In contrast, if the presence of foreign atoms inside C28 cages stabilizes the isolated nanoparticles, then molecular crystals (such as C60 fullerites) are formed due to weak van der Waals forces.  相似文献   

17.
Field investigations were performed into the nature of oxidation of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy (Vitreloy-1), a new alloy highly promising for in -vessel mirrors of the ITER (International Thermonuclear Experimental Reactor). The main methods of investigation were X-ray photoelectron spectroscopy and multi-angle ellipsometry. The resistance of the optical properties of Vitreloy-1 against radiation impact was explained by the oxidation of the surface layer, based on the features of the diffusion process in amorphous alloys and of interaction between amorphous metal alloys with hydrogen.  相似文献   

18.
We report the first-principles Car-Parrinello molecular dynamics study of the behaviour of a single transition metal Ta atom on fullerene C60, at different temperatures, and for both neutral and charged clusters. We seek to characterise the motion of the lone Ta metal atom on the C60 surface, contrasting its behaviour both with that of three Ta atoms, as well as with a single alkali metal atom on the cage surface. Our earlier simulations on C60Ta3 had revealed that the Ta atoms on the surface of the fullerene are affected by a rather high mobility, and that the motion of these atoms is highly correlated due to Ta-atom-Ta-atom attraction. Earlier, experimental studies of a single metal atom (K, Rb) on the surface of a C60 molecule had led to the inference that at room temperature the metal atom skates freely over the surface, the first direct evidence for which was presented by us in earlier first principles molecular dynamical simulations.  相似文献   

19.
A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C60 molecule to a defect on the nanotube surface.  相似文献   

20.
Carbon-based nanoparticles (NPs) such as fullerenes and nanotubes have been extensively studied for drug delivery in recent years. The permeation process of fullerene and its derivative molecules through membrane is essential to the utilization of fullerene-based drug delivery system, but the mechanism and the dynamics of permeation through cell membrane are still unclear. In this study, coarse-grained molecular dynamics simulations were performed to investigate the permeation process of functionalized fullerene molecules (ca. 0.72 nm) through the membrane. Our results show that single functionalized fullerene molecule in such nanoscale could permeate the lipid membrane in micro-second time scale. Pristine C60 molecules prefer to aggregate into several small clusters while C60OH15 molecules could aggregate into one big cluster to permeate through the lipid membrane. After permeation of C60 or its derivatives into membrane, all C60 and C60OH15 molecules disaggregated and monodispersed in the lipid membrane.
Graphical abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号