首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of a high-frequency response in resonant tunneling double-well nanostructures have been considered for various energies of electrons arriving to a structure of electrons, various frequencies of the external electromagnetic field, and various features associated with the interaction of electronic states in neighboring quantum wells in double-well nanostructures. The energy filtration effect that is caused by the breaking of the symmetry of the high-frequency response in double-well nanostructures in a static electric field has been revealed. This effect leads to a sharp increase in the gain under conditions of the quantum amplification regime and opens real prospects of a significant increase in the efficiency of solid amplifying and generating devices based on resonant tunneling double-well nanostructure in the subterahertz and terahertz frequency ranges.  相似文献   

2.
The time dependence of resonant electron tunneling inGaAs andAlAs quantum heterostructures is studied for a three-trough model. From an analysis of transmitted and reflected wave phases, the spectra of tunneling and reflection times are obtained. The tunneling of a wave packet through a two-barrier heterostructure is modeled by numerical solution of the nonstationary Schrödinger equation.  相似文献   

3.
The influence of inelastic effects on electron quantum transport through the potential relief of a dimer system was studied by exact solution of the Schrodinger equation. The nature of this problem is due to the coherent superposition of the different potential profiles through which the spin-polarized electron tunnels. It was found that the low magnetic field initiates new peaks of resonant tunneling. In high magnetic fields, the transport of electrons with opposite spin polarization is qualitatively different.  相似文献   

4.
The resonant tunneling of electrons through quasistationary levels in the valence band of a quantum well in double-barrier structures based on III–V materials with type-II heterojunctions is considered in a quantizing magnetic field directed perpendicularly to the interfaces. The transmission coefficients of the tunnel structure for transitions from states corresponding to different Landau levels are calculated using the Kane model. It is shown that transitions with a unit change in the Landau level index n as a result of mixing of the wave functions of states with opposite spin orientations are possible on the interfaces due to spin-orbit coupling. The probability of such transitions can be comparable to the probability of transitions without a change in the Landau level index for InAs/AlGaSb/GaSb resonant-tunneling structures. Fiz. Tverd. Tela (St. Petersburg) 40, 2121–2126 (November 1998)  相似文献   

5.
He Gao 《Physics letters. A》2008,372(35):5695-5700
We have investigated the mesoscopic transport properties of a quantum dot embedded Aharonov-Bohm (AB) interferometer applied with a rotating magnetic field. The spin-flip effect is induced by the rotating magnetic field, and the tunneling current is sensitive to the spin-flip effect. The spin-flipped electrons tunneling from the direct channel and the resonant channel interfere with each other to form spin-polarized tunneling current components. The non-resonant tunneling (direct transmission) strength and the AB phase φ play important roles. When the non-resonant tunneling (background transmission) exists, the spin and charge currents form asymmetric peaks and valleys, which exhibit Fano-type line shapes by varying the source-drain bias voltage, or gate voltage. The AB oscillations of the spin and charge currents exhibit distinct dependence on the magnetic flux and direct tunneling strength.  相似文献   

6.
We investigate characteristics of spin tunneling time in ZnSe/Ze1-xMnxSe multilayers under the influence of both an electric field and a magnetic field. The results indicate that the tunneling time shows complicated oscillations and significant spin separation for electrons with different spin orientations traversing semimagnetic semiconductor heterostructures. It is also shown that the tunneling time exhibits obvious asymmetry in opposite tunneling directions for electrons tunneling through asymmetric heterostructures, which mainly occurs in resonant regions. The degree of the asymmetry of the tunneling time is not only spin-polarization dependent but also external-field induced. Received 10 July 2001  相似文献   

7.
Resonant tunneling of electrons is thoroughly studied in in-plane magnetic fields. Anticrossing is revealed in a spectrum of two-dimensional electrons at energies of optical phonons. The magnetic field changes the momentum of tunneling electrons and causes a voltage shift of a resonance in the tunnel spectra in accordance with the electron dispersion curve. Anticrossing is clearly observed in second derivative current-voltage characteristics of a resonant tunneling diode made of a double-barrier Al0.4Ga0.6As/GaAs heterostructure.  相似文献   

8.
The spectral parameters (resonance energies and resonance widths) of quasi-stationary states in an open symmetrical three-barrier resonant tunneling nanostructure have been theoretically calculated in terms of the model of spatially dependent effective masses and rectangular potentials of quasiparticles (electrons, holes, excitons) by using the methods of transmission coefficient, scattering matrix, and probability distribution function. The evolution of the spectral parameters of quasi-stationary states of quasiparticles as a function of the variation in the geometric sizes of the nanosystem has been calculated and analyzed for the open three-barrier resonant tunneling structure consisting of three barriers (GaAs) and two wells (In0.25Ga0.75As) as an example. It has been established that the experimental and theoretical results are in satisfactory agreement for the model without fitting parameters in the case of a heavy exciton.  相似文献   

9.
In electron resonant tunneling through a double barrier structure, we show that dynamical electron-electron interactions in the resonant well can give rise to additional tunneling satellites due to collective electronic excitations. We present a first principle treatment for frequency-dependent electron-electron interactions in the resonant tunneling problem. The result confirms the previously proposed plasmon assisted resonant tunneling mechanism. We also find that the particle-hole excitation has very little effect on resonant tunneling. Our result can be applied to study the effects of various electronic excitations on the resonant tunneling of electrons.  相似文献   

10.
Plasma-field structures that arise under the interaction between a relativistically strong electromagnetic wave and a layer of overdense plasma are considered within a quasistationary approximation. It is shown that, together with known solutions, which are nonlinear generalizations of skin-layer solutions, multilayer structures containing cavitation regions with completely removed electrons (ion layers) can be excited when the amplitude of the incident field exceeds a certain threshold value. Under symmetric irradiation, these cavitation regions, which play the role of self-consistent resonators, may amplify the field and accumulate electromagnetic energy.  相似文献   

11.
The generation of a quasistationary magnetic field in a plasma interacting with a weakly focused low-intensity short laser pulse has been studied. It has been shown that the magnetic field changes direction at times comparable with the free path time of effective electrons. Generation also occurs after the switching off of the short pulse and the maximum field is proportional to the duration of the pulse and is reached at times larger than the free path time of the suprathermal electrons.  相似文献   

12.
The average binding energy and the level width for the resonant D(-)-state in a quantum molecule have been calculated in the presence of an external electric field. The calculations were performed in the zeroradius potential model with allowance for the tunneling decay of the resonant state. The external electric field is shown to stimulate the decay of resonant D(-)-states under conditions of dissipative tunneling. It was found that the curve of the probability of photoionization of the D(-)-center as a function of the external electric field strength has two peaks that are connected with a change in the symmetry of the double-well oscillator potential of the quantum molecule and with the transformation (caused by the electric field) of envelope wave functions, respectively.  相似文献   

13.
Works, mostly experimental, concerning the most interesting features of application of the resonant tunneling spectroscopy to a new type of heterosystems, van der Waals heterostructures, have been briefly reviewed. These heterostructures appeared after the recent discovery of two-dimensional crystals, which are a new class of materials beginning with graphene. The role of the angular matching of crystal lattices of conducting graphene electrodes of van der Waals systems in carrier tunneling between them has been analyzed together with the closely related problems of satisfaction of conservation laws in tunneling transitions. Manifestations of multiparticle correlation interactions between carriers in van der Waals systems such as Wigner crystallization of electrons in a two-dimensional electron gas in a magnetic field and Bose condensation of excitons in parallel two-dimensional electron gases have been briefly discussed.  相似文献   

14.
Analytical solutions of the Schrödinger equation for a two-barrier structure (resonance-tunnel diode) with open boundary conditions are found within the model of coherent tunneling of interacting electrons. Simple expressions for resonance current are derived which enable one to analyze the current-voltage characteristics, the conditions of emergence of hysteresis, and singularities of the latter depending on the parameters of resonance-tunnel diode. It is demonstrated that the hysteresis is realized if the current exceeds some critical value proportional to the square of resonance level width.  相似文献   

15.
Electromagnetic properties of the graphene junctions   总被引:1,自引:0,他引:1  
The directional diagram of the charge transport through a 'clean' and short monolayer graphene junction GJ exposed to an external electromagnetic field had been examined. We find that the photon-assisted resonant chiral tunneling across the monolayer graphene junction (GJ) causes an angular redistribution of the tunneling current density. The directional a.c. transport phenomena may be utilized in novel nanoelectronic devices working in the THz frequency range.  相似文献   

16.
We propose a simple quantum structure which exhibits resonant tunneling under one bias and simple tunneling under the opposite one, thus acting as a rectifier. The diode consists of a single laterally-indented barrier. Due to its particular conduction-band profile, electrons undergo resonant tunneling when the bias creates a band-profile triangular well which can contain a resonant state aligned to the emitter Fermi energy. A diode with an active layer of ≈ 100Å, realized by AlGaAs/GaAs, has a Rectification Ratio, calculated at the current-peak bias at resonance, of ≈ 100. This value can be enhanced by putting in series several elements of this kind.  相似文献   

17.
We use a modulation-doped double barrier heterostructure to fabricate a resonant tunneling single electron transistor. Irregular Coulomb blockade oscillations are observed when the gate voltage is swept to vary one-by-one the number of electrons in the dot close to 'pinch-off'. The oscillation period is not regular, and generally becomes longer as the electron number is decreased down to zero, reflecting the growing importance of electron-electron interactions and size quantization. Negative differential resistance associated with resonant tunneling through zero-dimensional states is pronounced for a dot holding just a few electrons. The temperature dependence of the Coulomb blockade oscillations and that for the negative differential resistance are not the same. This highlights the different effects of charging and resonant tunneling on the transport characteristics.  相似文献   

18.
We have considered the influence of electromagnetic fluctuations on electron tunneling via one non-degenerate resonant level, the problem that is relevant for electron transport through quantum dots in the Coulomb blockade regime. We show that the overall effect of the fluctuations depends on whether the electron bands in external electrodes are empty or filled. In the empty band case, depending on the relation between the tunneling rate Γ and characteristic frequency Ω of the fluctuations, the field either simply shifts the conductance peak (for rapid tunneling, Γ Ω) or broadens it (for Γ Ω). In the latter case, the system can be in three different regimes for different values of the coupling g between electrons and the field. Increasing interaction strength in the region g < 1 leads to gradual suppression of the conductance peak at the bare energy of the resonant level ε0, while at g 1 it leads to the formation of a new peak of width at the energy ε0 + Ecis a charging energy. For intermediate values of g the conductance is non-vanishing in the entire energy range from ε0 to ε0 + Ec. For filled bands the problem is essentially multi-electron in character. One consequence of this is that, in contrast to the situation with the empty band, the fluctuations of the resonant level do not suppress conductance at resonance for g < 1. At g> 1 a Coulomb gap appears in the position of the resonant level as a function of its bare energy which leads to suppression of conductance.  相似文献   

19.
The resonant tunneling condition and transmission coefficient are derived theoretically for a symmetrical one-dimensional rectangular double-barrier structure under the assumption of the tunneling effective mass. They are given in analytical form, which has been overlooked. The energy variation of the transmission coefficient of electrons is shown for an ABABA-type and an ABCBA-type potential cases.  相似文献   

20.
We show that resonant tunneling of electromagnetic (EM) fields can occur through a six-layer structure con- sisting of two pairs of bilayer slabs: one'being an epsilon-negative layer and the other being a mu-negative layer with a double-positive (DPS) medium and air. This type of tunneling is accompanied by high-magnetic field. The Poynting vector distributions and the material dissipation are studied. Our results demonstrate that the EM field in the structure is controlled flexibly by single-negative media and DPS slab. Therefore, this structure has potential applications in wireless energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号