首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This work investigates the origin of novel visible photoluminescence (PL) bands observed in the spinel MgAl2O4:Co2+. Besides the well-known fourfold-coordinated Co2+(Td) PL at 670 nm [N.V. Kuleshov, V.P. Mikhailov, V.G. Scherbitsky, P.V. Prokoshin and K.V. Yumashev, J. Lumin. 55 (1993) 265.], a rich structured PL band at 686 nm was also observed that we associate with uncontrolled impurities of sixfold coordinated Cr3+(Oh) by time-resolved spectroscopy and lifetime measurements and their variation with temperature. We also show that the lifetime of the Co2+(Td) emission at 670 nm varies from τ=6.7 μs to 780 ns on passing from T=10 to 290 K. This unexpected behaviour for Td systems is related to the excited-state crossover (4T12E), making the emission band to transform from a narrow-like emission from 2E at low temperature to a broad structureless band from 4T1 at room temperature.  相似文献   

2.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) characteristics of Eu3+ ion doped borate phosphors; BaZr(BO3)2:Eu3+ and SrAl2B2O7:Eu3+ are studied. The excitation spectra show strong absorption in the VUV region with the absorption band edge at ca. 200 nm for BaZr(BO3)2:Eu3+ and 183 nm for SrAl2B2O7:Eu3+, respectively, which ensures the efficient absorption of the Xe plasma emission lines. In BaZr(BO3)2:Eu3+, the charge transfer band of Eu3+ does not appear strongly in the excitation spectrum, which can be enhanced by co-doping Al3+ ion into the BaZr(BO3)2 lattices. The luminescence intensity of BaZr(BO3)2:Eu3+ is also increased by Al3+ incorporation into the lattices. The PL spectra show the strongest emission at 615 nm corresponding to the electric dipole 5D07F2 transition of Eu3+ in both BaZr(BO3)2 and SrAl2B2O7, similar to that in YAl3(BO3)4, which results in a good color purity for display applications.  相似文献   

3.
We report the formation of mesoporous zinc sulphide, composed by the fine network of nanoparticles, which was formed via a single precursor Zn(SOCCH3)2Lut2 complex. The complex was chemically synthesized using zinc carbonate basic, 3,5-lutidine and thioacetic acid, in air. The metal precursor complex was characterized using different conventional techniques. Thermogravimetric analysis (TGA) result indicates that the decomposition of the complex starts at 100 °C and continues up to 450 °C, finally yielding ZnS. ZnS nanocrystals were characterized by powder X-ray diffraction (XRD) technique, field emission scanning electron microscopy (FESEM), N2-sorption isotherm, UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The grain diameter of nanocrystals was found to be 4-5 nm. The material followed Type-IV N2-sorption isotherm, which is the characteristic of mesoporous materials. The band gap energy, as obtained from optical measurements was around 3.8 eV.  相似文献   

4.
Polycrystalline powder samples of terbium doped Zn(BO2)2 phosphors were prepared by solid state reaction in the thermal carbon reducing atmosphere at high temperature. The photoluminescence (PL), three-dimensional (3D) TL emission spectrum and dosimetric characteristics following 60Co gamma-rays irradiation were studied. Characteristic emission bands of Tb3+ at about 490, 543, 584 and 620 nm, attributed to the 5D47FJ (J=3, 4, 5, 6) transitions of Tb3+ ions, were observed in the TL and PL emission spectrum. No emission from Tb4+ ions was observed in the TL emission spectrum. The TL-dose response of the powder samples Zn(BO2)2:Tb to 60Co gamma-rays radiation in the dose range from 1 to 100 Gy for clinical dose levels was almost linear. The experiment results showed that Zn(BO2)2:Tb has potential use as the materials of gamma-rays thermoluminescence dosimeter (TLD) for clinical dosimetry.  相似文献   

5.
孙沛  李建军  邓军  韩军  马凌云  刘涛 《物理学报》2013,62(2):26801-026801
用来制作光电子器件的(Al0.1Ga0.9)0.5 In0.5P为直接带隙的四元合金材料,对应的发光波长为630 nm,在其LP-MOCVD (low press-metalorganic chemical vapor deposition)外延生长过程中温度的高低成为影响其质量的关键,找到合适的生长温度窗口很有必要.实验中分别在700℃,680℃,670℃和660℃的条件下生长出作为发光二极管有源区的(Al0.1Ga0.9)0.5 In0.5P多量子阱结构,通过PL谱的测试对比分析,找出最佳生长温度在670℃附近.之后对比各外延片的PL谱、表面形貌,并对反应室的气流场进行了模拟,对各温度下生长状况的原因作出了深入分析.分析得到,高温下In组分的再蒸发会引起晶格失配并导致位错;低温下O杂质的并入会形成大量非辐射复合中心影响晶体质量,因此导致了(Al0.1Ga0.9)0.5In0.5P生长温度窗口较窄,文章最后提出In源有效浓度的提高是解决高温生长的一条有效途径.  相似文献   

6.
Y3−xMg2AlSi2O12:Cex3+ (x=0.015, 0.03 and 0.06) phosphors possessing garnet crystal structure were synthesized by the sol–gel combustion technique. The samples were characterized by application of powder X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, thermal quenching (TQ) and scanning electron microscopy (SEM). Moreover, luminous efficacies (LE), color points and quantum efficiencies (QE) were calculated. Optical properties were studied as a function of Ce3+ concentration and annealing temperature. XRD analysis revealed that sintering of polycrystalline Y3Mg2AlSi2O12:Ce3+ powders at 1550 °C results in nearly single-phase garnet materials. Phosphors showed broad emission band in the range of 500–750 nm and had the maximum intensity at 600 nm, which results in strongly red-shifted phosphors compared with conventional YAG:Ce phosphors emitting at 560 nm. However, strong concentration quenching has also been observed, probably due to increased Stokes shift.  相似文献   

7.
A series of new red phosphors, MZr2(PO4)3:Eu3+; Bi3+ (M=Na; K), were synthesized using the solidstate reaction method, and their photoluminescence spectra were measured. The MZr2(PO4)3:Eu3+; Bi3+ (M=Na; K) phosphors were efficiently excited by an ultraviolet (UV; 395 nm) source, and showed intense orange-red emission at 595 nm. Further investigation of the concentration-dependent emission spectra indicated that the MZr2(PO4)3:Eu3+; Bi3+ (M=Na; K) phosphors exhibit the strongest luminescence intensity when y = 0.01 in NaZr2(0:95−y)(PO4)3:Eu0.103+, Bi2y 3+ and y = 0.09 in NaZr2(0.95−y)(PO4)3:Eu0.103+, Bi2y 3+, whereas the relative PL intensity decreases with increasing Bi3+ concentration due to concentration quenching. The addition of Bi3+ widens the excitation band of NaZr2(0.95−y)(PO4)3:Eu0.103+, Bi2y 3+ around 320 nm, which provides the useful idea of broadening the excitation band around 300–350 nm to fit the ultraviolet chip.  相似文献   

8.
Nanocrystalline zinc ferrite (ZnFe2O4) is synthesized by high-energy ball-milling after 12 h from a powders mixture of zinc oxide (ZnO) and hematite (α-Fe2O3) with balls to powders mass ratio of 20:1. X-ray diffraction, vibrating sample magnetometer (VSM), the Mössbauer spectrometry and photoluminescence (PL) are used to characterize the samples. Rietveld analysis and VSM measurements show that the powder has an average crystallites size of 10 nm and a ferrimagnetic behavior with a saturation magnetization of 30 emu/g. After annealing at 700 °C, the lattice parameter reduces from 8.448 to 8.427 Å and the sample transforms into a superparamagnetic behavior, which was confirmed as well by the room temperature Mössbauer spectrometry. Different mechanisms to explain the obtained results and the correlation between magnetism and structure are discussed. Finally, the broadband visible emission band is observed in the entire PL spectrum and the estimated energy band gap is about 2.13 eV.  相似文献   

9.
Eu3+-doped LiGd(MoO4)2 red phosphor was synthesized by solid-state reaction, and its photoluminescent properties were measured. The effect of Eu3+ doping concentration on PL intensity was investigated, and the optimum concentration of Eu3+ doped in LiGd(MoO4)2 was found to be 30 mol%. Compared with Y2O2S:0.05Eu3+, Na0.5Gd0.5MoO4:Eu3+ and KGd(MoO4)2:Eu3+, the LiGd(MoO4)2:Eu3+ phosphor showed a stronger excitation band around 395 nm and a higher intensity red emission of Eu3+ under 395 nm light excitation. For the first time, intensive red light-emitting diodes (LEDs) were fabricated by combining phosphor and a 395 nm InGaN chip, confirming that the LiGd(MoO4)2:Eu3+ phosphor is a good candidate for LED applications.  相似文献   

10.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

11.
The photoluminescence (PL) enhancement has been studied at room temperature using various specimen atmospheres (O2 gas, CO2 gas, CO2–H2 mixture gas, Ar–H2 mixture gas and vacuum) under 325 nm laser light irradiation on various metal oxides. Of them, the results obtained for BaTiO3 nanocrystals, SrTiO3 ones and HfO2 powder crystal are given in the present paper. Their PL were considerably increased in intensity by irradiation of 325 nm laser light in CO2 gas and CO2–H2 mixture gas. The cause of the PL intensity enhancements is discussed in the light of the exciton theory, the defect chemistry and the photocatalytic theory. The results may be applied for the utilization of greenhouse gas (CO2) and the optical sensor for CO2 gas.  相似文献   

12.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) properties of Sr(Y, Gd)2O4 doped with Eu3+ were studied. The excitation spectra of SrY1.9Eu0.1O4 and SrY1.0Gd0.9Eu0.1O4 had absorption in the VUV region with the absorption band edge at 149 nm, while the absorption of SrGd1.9Eu0.1O4 in the VUV region was weak, which could be due to the narrow host band gap and no efficient energy transfer occurred in the VUV region. The PL spectra of all samples exhibited the characteristic emission of Eu3+ with the red 5D0-7F2 transition (611 nm) being the most prominent group.  相似文献   

13.
Novel Eu3+, Ce3+ activated NaBa4(BO3)3 phosphors were synthesized by solid-state reactions. The excitation spectrum of NaBa4(BO3)3:Ce3+ consists of an intense band peaking at 350 nm and a weak band in the higher energy side, and the emission spectrum exhibits a blue band with a maximum at about 420 nm. The Eu3+ emission in NaBa4(BO3)3 consists of the transitions from 5D0 to 7FJ, and the excitation spectrum consists of broad excitation band peaking at 270 nm and some intense narrow lines. The optimum doped concentration, the critical distance of the concentration quenching, and the fluorescence lifetime have also been investigated.  相似文献   

14.
The results of photoconductivity (PC), photoluminescence (PL), optical absorption spectra, XRD and SEM studies are presented for (Cd0.95-Pb0.05)S: CdCl2,Ce films prepared by chemical bath deposition technique. PC gains ∼107 are found in doped films. PL emission spectrum is found in red region which is related to 5d to 4f transition in Ce. Films prepared at 60°C show better PC while those prepared at room temperature (RT) show better PL. Optical absorption studies show reduction in band gap due to addition of PbS. A peak due to Ce is also observed in absorption spectrum. XRD studies show the presence of both CdS and PbS. SEM studies show presence of microcrystals, cluster of grains along with some rod type structures.  相似文献   

15.
A red-emitting Y2(WO4)3: Eu3+ phosphor (orthorhombic high temperature phase, anhydride) is prepared by two different methods: the firing of mixtures of constituent oxides and that of precipitates from aqueous solutions. After optimizing preparation conditions, the cathodoluminescence brightness reaches 56% that of Y2O2S: Eu3+, a commercial red phosphor for color TV. Formation of a high temperature phase below the reported transition temperature is noted in the fired precipitates. This phase occurrence is shown to depend on the treatment of the precipitates to be fired. Reflection difference measurement of Eu-doped and undoped samples assigns an excitation band of about 245 nm to the Eu-O charge transfer band. Different by-products in the two preparation methods are identified by measuring emission spectra under selective excitation. Reversible hydration-dehydration of the phosphor is demonstrated by successively measuring photoluminescence first in vacuum and then in air at various temperatures. No deterioration of luminescence efficiency is observed after repeating this reversible structural change.  相似文献   

16.
The excitation spectra of M (M=Si4+, Ti4+) and Eu3+ co-doped BaZr(BO3)2, BaZrO3:Eu and La2Zr2O7:Eu in the vacuum ultraviolet (VUV) regions of 110-300 nm are investigated and the host-lattice absorption are characterized. The result indicated that BaZr(BO3)2:Eu3+ phosphor has a strong absorption under the VUV excitation, and in the host-lattice excitation, the strong band at 130-160 nm could be due to the BO3 atomic groups; the band at 160-180 nm is related to the excitation of Ba-O; 180-200 nm corresponds to the charge transfer (CT) transition of Zr-O. The band at 200-235 nm due to the CT band of Eu3+-O2− and a bond valence study explained the observed weak CT band of Eu3+-O2− in the excitation spectra of BaZr(BO3)2:Eu3+. The emission results show that Si4+ can sensitize luminescence in the host of BaZr(BO3)2:Eu but Ti4+ has no improvement effect on luminescence.  相似文献   

17.
A blue shifted photoluminescent emission in bis(2-(2′-hydroxyl phenyl)benzthiazolate)zinc (II) complex, ZBZT, arises out of the dimeric structure, typical of the localized electron density around the non-bridged ligand in the excited state of the complex. An average decay lifetime of 4.8 and 3.0 ns for the ligand and the complex, respectively indicates an energy transfer from the ligand to the metal. A PL quantum efficiency of about ?ZBZT=0.45 in DMF solution is observed, in comparison to the Alq3, complex, ?Alq3=0.116. Semi empirical ZINDO/S-SCF-CI calculations support the dominance of non-bridged ligand moiety in controlling the photoluminescent properties. An unusually broad white light (FWHM ∼220 nm) electroluminescent emission in the two layer device structure brings out the features of an exciplex formation between the active layer ZBZT/TPD interface, which is studied at different current densities. Such a broadened emission is verified for different thicknesses of the active layer substantiating the role of exciplex formation.  相似文献   

18.
Li2O-ZrO2-SiO2: Ho3+ glasses mixed with three interesting d-block elemental oxides, viz., Nb2O5, Ta2O5 and La2O3, were prepared. Optical absorption and photoluminescence spectra of these glasses have been recorded at room temperature. The luminescence spectra of Nb2O5 and Ta2O5 mixed Li2O-ZrO2-SiO2 glasses (free of Ho3+ ions) have also exhibited broad emission band in the blue region. This band is attributed to radiative recombination of self-trapped excitons (STEs) localized on substitutionally positioned octahedral Ta5+ and Nb5+ ions in the glass network. The Judd-Ofelt theory was successfully applied to characterize Ho3+ spectra of all the three glasses. From this theory various radiative properties, like transition probability A, branching ratio βr and the radiative lifetime τr, for 5S2 emission levels in the spectra of these glasses have been evaluated. The radiative lifetime for 5S2 level of Ho3+ ions has also been measured and quantum efficiencies were estimated. Among the three glasses studied the La2O3 mixed glass exhibited the highest quantum efficiency. The reasons for such higher value have been discussed based on the relationship between the structural modifications taking place around the Ho3+ ions.  相似文献   

19.
The overall performance of a large number of coreshells (Au@SiO2) on the fluorescence of molecules doped within the silica shell is studied theoretically by considering the random orientation and location of the molecules to calculate the average enhancement factor (AEF). Using Mie’s theory, the component of the intensified electric field along the dipole’s orientation at the molecular location in the presence of the coreshell, irradiated with polarized light, is calculated for analyzing the molecular excitation rate. In addition, using dyadic Green’s functions, the analytical solution of the electromagnetic field induced by an arbitrarily oriented and located electric dipole embedded in the shell is derived to simulate the radiative and non-radiative decay rates of an excited molecule, and then the apparent quantum yield of the system is obtained. Combining the two solutions, the enhancement factor (EF) is evaluated. Furthermore, AEF is calculated by averaging the individual EF over all possible orientations and positions of the molecules. Our results indicate that the AEF of Au@SiO2 is much lesser than the maximum EF, and it behaves as a low-frequency enhancer with a cutoff wavelength of 590 nm.  相似文献   

20.
Synthesis and photoluminescence (PL) investigations of lithium metasilicate doped with Eu3+, Tb3+ and Ce3+ were carried out. PL spectra of Eu-doped sample showed peaks corresponding to the 5D07Fj (j=1, 2, 3 and 4) transitions under ultraviolet excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in structurally disordered environment. Tb3+-doped silicate sample showed blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions. Ce-doped sample under excitation from UV, showed a broad emission band in the region 350-370 nm with shoulders around 410 nm. The fluorescence lifetimes of Eu3+ and Tb3+ ions were found out to be 790 and 600 μs, respectively. For Ce3+, the lifetime was of the order of 45 ns. PL spectra of the europium- and terbium-doped samples were compared with commercial red (Y2O3:Eu3+) and green (LaPO4:Tb3+) phosphors, respectively. It was found that the emission from the doped silicate sample was 37% of the commercial phosphor in case of the Tb-doped sample and 8% of the commercial phosphor in case of the Eu-doped sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号