首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of muonium (μ + e , Mu) with the surfaces of fine silica powders have been extensively studied using zero, longitudinal and transverse field μSR techniques. These studies indicate diffusion and trapping behavior of the Mu atoms on the silica surface, which is strongly influenced by the surface hydroxyl (OH) concentration. Specifically, the presence of the surface OH groups is observed to inhibit the surface mobility of the Mu atoms at low temperatures. Information provided by zero and longitudinal field data suggest a random anisotropic distortion of the Mu hyperfine interaction (RAHD) as the principal relaxation mechanism. A recently developed RAHD spin relaxation theory is used to interpret these data. Additional investigations, using platinum loaded silica, have yielded the first observed surface reaction of Mu. Studies of the interactions of positive muons with surfaces have been also extended to single crystals, where low energy (<10 eV)μ + andMu ions are observed to be reemitted from some materials (e.g., the <100> surface of lithium fluoride). Future applications of these emission phenomena toward the development of a slow847-3 (or Mu) beam are considered.  相似文献   

2.
A small fraction of implanted muons exists as a paramagnetic state (presumably MuBC 0, muonium at the Si—Si bond center) in heavily Sb‐doped Si (n-type, [Sb]\ \simeq 1018\ cm–3). The paramagnetic state is susceptible to illumination both at 10–20 K and 290 K, providing evidence that holes (minority carriers) play an important role in determining the dynamical properties of muonium centers, where change may occur via a process MuBC 0+ h+\to MuBC + followed by charge exchange reaction (or transition Mu+ BC+ e→ Mu0 T). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The behavior of muonium on the surface of finely divided silica (amorphous SiO2) powder (mean grain diameter 70 Å) has been studied as a function of the surface concentration of hydroxyl groups. The temperature dependence of the Mu relaxation rate in transverse field was measured for samples prepared with 0%, 50% and 70% of the surface hydroxyl groups removed over the temperature range 4 K <T < 300 K. The relaxation rate shows a distinct maximum at about 25 K and a minimum at about 16 K for all three samples, and shows a dramatic decrease below 16 K as the concentration of surface hydroxyls is reduced. A three-state nonequilibrium model describing the diffusion and trapping of muonium on the silica surface is used to interpret the data.On leave from Department of Physics, University of Saskatchewan, Saskatoon, Sask. S7N OWO, Canada.  相似文献   

4.
A slow conversion to a diamagnetic state has been observed for muonium centers at the tetrahedral interstitial site (Mu0 T) in dark Ge at low temperatures. While the conversion process is affected by illumination, no effect of illumination upon the initial (Mu0 T) centers themselves was observed at 10 K. This is in marked contrast with the case of (Mu0 T) centers in Si where strong interaction with photo‐induced carriers is observed, suggesting that the electronic level associated with (Mu0 T) state in Ge is not located in the energy gap. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
We report RF‐μSR results in lightly n‐doped Si samples. Measurement of the diamagnetic amplitude in both the \langle 100\rangle and \langle 111\rangle directions for a sample with ND\leq5\times 1012\ cm-3 clarifies the charge/spin electron‐exchange dynamics for bond‐centered muonium and yields a 3300 Å 2 electron‐capture cross section at Mu+ BC. An increase in the Mu0 BC RF amplitude observed at 30K in a sample of ND\simeq 2\times 1013\ cm-3 provides direct evidence for enhanced low‐temperature creation of MuBC 0 at the expense of MuT 00 with increased electron concentration.  相似文献   

6.
Transverse and zero‐field muon spin relaxation reveal several diamagnetic muonium states in InP characterized by their static linewidths and diffusion properties. We tentatively associate low‐temperature diamagnetic states with Mu+ in the BC and TP interstitial sites and a missing fraction with Mu0 rapidly diffusing through TIn interstices. Trapping peaks above 250 K imply static centers which depend on doping type, consistent with Mu- at TIn for n‐type samples and Mu coupled with a dopant or other defect for p‐type. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Evidence is presented for a transition from the isotropic muonium state (Mu) to the [111] axially symmetric anomalous muonium state (Mu*) in diamond. Amplitude measurements for Mu* in a powder in zero field and with a single crystal oriented in a magnetic field indicate that such a transition occurs with a temperature-dependent rate(T) and that the electron polarization is conserved during the transition. The possibility of determining the absolute sign of the Mu* hyperfine parameters is discussed.  相似文献   

8.
Transverse‐field μSR spectroscopy was used to study the behaviour of positive muons implanted in polycrystalline chemical‐vapour‐deposited (CVD) diamond. Measurements were made at sample temperatures of 10 K, 100 K, and 300 K at a magnetic field of 7.5 mT to study the behaviour of the “normal” (isotropic) muonium state (MuT) and the diamagnetic states (μd), and at 10 K and 300 K at the so‐called “magic field” of 407.25 mT to study the anomalous (bond‐centred) muonium state (MuBC) and μd. The absolute fractions of the muonium states in the CVD diamond are observed to be close to those in high‐quality natural type‐IIa single crystal diamond. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
A procedure has been developed to extract qualitative and quantitative information on the muonium fractions, in particular the Mu* fraction, in polycrystalline and amorphous materials from their longitudinal field repolarization curves. Preliminary results for amorphous silicon suggests that both the Mu* and Mu* fractions here are generally lower than in crystalline silicon at temperatures below 200K, but the Mu* fraction may survive to room temperature in this disordered host.  相似文献   

10.
The diamagnetic muonium states in heavily doped GaAs are investigated with a combination of transverse‐field and longitudinal‐field μSR techniques. In metallic n‐type GaAs, formation of Mu- occurs because of the high Fermi energy. This analog of the hydride ion (H-) is located in a TGa interstice where it is essentially immobile up to about 500 K. At higher temperatures, MuT acts as an electron–hole recombination center. In p‐type GaAs, Mu+ traps at two different sites, one at low temperatures and a second at higher temperatures after detrapping from the first. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The electronic structure of muonium (Mu) located at the bond-centered sites of the silicon and diamond crystals is calculated by the intermediate neglect of differential overlap method. Calculations of the electronicg- and hyperfine interaction tensors of the impurity atom are performed. The results obtained are compared to the experimental properties of “anomalous” muonium Mu*. It is shown that the properties of Mu located at the bond-centered sites of the Si and C lattices are in qualitative agreement with the observed properties of Mu*.  相似文献   

12.
The electronic structure of muonium (Mu) located at different interstitial sites of the silicon crystal is calculated by the complete neglect of differential overlap (CNDO) and intermediate neglect of differential overlap (INDO) methods. Calculations of the electronicg- and hyperfine interaction tensors of the impurity atom are performed. The results obtained are compared with the experimental properties of both “normal” (Mu′) and “anomalous” (Mu*) muonium centers. It is shown that the most likely dynamic model for Mu′ is that in which neutral Mu diffuses rapidly in the silicon lattice, whereas for Mu* it is the model wherein interstitial Mu is located at the bond-center site. A correlation is made between the characteristics of the hydrogen-bearing Si-AA9 center, recently observed by EPR in a silicon crystal, and those of Mu*. The Si-AA9 center is shown to be a hydrogen-bearing paramagnetic analogue of the Mu* center.  相似文献   

13.
The ionization of muonium centers in Si and GaAs have been studied using radio frequency (RF) resonant techniques. In Si all three muonic centers are detectable by RF. No evidence was found for delayed Mu and Mu* states at any temperature. However, our results on the diamagnetic final state (μ f + ) show that it is composed of prompt fractions (as seen by conventional μSR) and delayed fractions arising from the ionization of Mu* and Mu. We observe a full μ f + fraction at 317 K when the Mu relaxation rate is above 10 μs−1. GaAs differs from the situation in Si in that we observed only a partial conversion of Mu* and Mu to a μ+ final state up to 310 K in spite of the fact that the transverse field relaxation rates become very high at 150 and 250 K respectively.  相似文献   

14.
The reaction rates of muonium with ethylene adsorbed on the surface of amorphous silica powder grains were measured between 6 K and 300 K. kf values characterizing the two-dimensional surface reactions and the 2 1/2 dimensional reactions with muonium in the gas phase were obtained.  相似文献   

15.
A transition from normal muonium (Mu) to anomalous muonium (Mu*) is observed in electron irradiated silicon. It is suggested that the transformation is induced by the strain field of the defect and takes place some distance away from the defect. The experiment was performed at 15 K.  相似文献   

16.
Evidence for the emission of slow muonium atoms from a 3.0-nm-thick SiO2 layer covered on an n-type Si is reported. Also, upon applying an rf-resonance technique at the muon frequency, a time-differential observation of a delayed state-change from muonium to diamagnetic muon at room temperature was observed. Combining results obtained by use of longitudinal field decoupling and transverse spin rotation methods, the conversion rate was estimated to be 5 to 10 μs−1. Both of the above results, namely the observation of the emission and state-change of muonium, suggest a process in which μ+ initially captures an electron from Si, then quickly converts to μ+ again during thermal diffusion in the Si towards the SiO2 layer. Within the oxide layer, muonium is again formed and subsequently is emitted from the SiO2 surface.  相似文献   

17.
It is shown that experimental data on Mu1 in silicon are most satisfactorily described by the uniaxial symmetric spin hamiltonian which means muonium displacement from the octa-cell center.  相似文献   

18.
Muonium, with a positive muon as the nucleus is considered a light isotope of hydrogen displaying a close chemical analogy to this atom. It offers a unique opportunity to study the behaviour of hydrogen in diamond at very low concentrations. The mass difference, however, implies that dynamical effects will be distinct. The bond centred muonium (Mu BC ) state in diamond is easily observed and there is a very good correlation between theoretical and experimental hyperfine parameters (Schneider et al., Phys. Rev. Lett. 71(4):557–560, 1993). Curiously, despite its predicted stability, the bond centred hydrogen state has not yet been observed in diamond. Following the discovery of hydrogen dopant states in certain wide band gap metal oxides, and the possibility of hydrogen related molecular dopants in diamond, the study of hydrogen in diamond is important. Although it is evident from its hyperfine parameters that Mu BC is not a shallow donor, the question still arises as to where the Mu BC state in diamond might lie in the band gap. Accordingly, measurements of the high temperature stability of Mu BC have been performed in a search for its possible ionization. The results are consistent with such an ionization, as the disappearance of Mu BC polarisation (setting in near 1000 K) is correlated with the slight increase in the population of the diamagnetic μ+ species.  相似文献   

19.
The motional and electrical properties of positively charged muonium (Mu+)(Mu+) centers in single crystal β-Ga2O3β-Ga2O3 are investigated via zero field muon spin relaxation (ZF-MuSR). Below room temperature we find two distinct shallow muonium centers with ionization energies of 7 and 16 meV. Above room temperature, at least three different Mu+ signals are resolved; two of these are metastable while the third shows characteristics of a stable ground state. As the temperature is elevated, metastable centers undergo several transitions. We obtain the relevant barrier energies associated with these site-change transitions. By 700 K, most muons occupy the mobile ground state, and an activation energy of about 1.65 eV is inferred for Mu+ diffusion from the hop rates obtained for this state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号