首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This work is concerned with the characteristics of the impact force produced when two randomly vibrating elastic bodies collide with each other, or when a single randomly vibrating elastic body collides with a stop. The impact condition includes a non-linear spring, which may represent, for example, a Hertzian contact, and in the case of a single body, closed form approximate expressions are derived for the duration and magnitude of the impact force and for the maximum deceleration at the impact point. For the case of two impacting bodies, a set of algebraic equations are derived which can be solved numerically to yield the quantities of interest. The approach is applied to a beam impacting a stop, a plate impacting a stop, and to two impacting beams, and in each case a comparison is made with detailed numerical simulations. Aspects of the statistics of impact velocity are also considered, including the probability that the impact velocity will exceed a specified value within a certain time.  相似文献   

2.
史宏云  陈贺胜 《物理学报》2012,61(2):20301-020301
本文构造了一个含有双能级原子的空腔系统,用来模拟一个含有双能级量子点的微腔系统, 并研究其对电子输运行为的影响.通过对该系统输运方程的求解,给出了系统输运系数的具体表达式,然后通过调整空腔及原子的本征特性以及两者的耦合性质,研究了电子在腔体中的输运行为对腔体本征属性的依赖关系. 这些结果可以为如何操控电子在微观结构器件中的输运特性提供一定的理论支持.  相似文献   

3.
秦华  冯东太  葛硕硕  王勇 《中国光学》2014,7(5):844-854
提出了一种组合非球面反射型太阳能聚光镜并给出了设计方法。聚光镜由38片非球面组成,每一片非球面都由一组特定系数C,a2,a4,a6,a8,a10的偶次非球面方程决定,是此特定非球面的一部分。根据非球面方程和光反射定律矢量形式,导出了非球面内壁上太阳反射光束的方向矢量与非球面系数C,a2,a4,a6,a8,a10的关系,适当地选择这些非球面系数,即适当地调整非球面面型,可以使太阳反射光束具有特定的方向矢量,使入射到非球面内壁上的太阳光束反射后全部聚焦在某一特定的区域内,形成小的光斑。每组特定系数都用粒子群优化算法求得,并经计算机模拟和实验证明其聚焦效果。聚光镜的光束压缩比为330:1,其聚焦光斑可作为一种高温热源,而此聚光镜可以用在太阳能加热装置中。  相似文献   

4.
A combined beam-tracing and transfer-matrix model for predicting steady-state sound-pressure levels in rooms with multilayer bounding surfaces was used to compare the effect of extended- and local-reaction surfaces, and the accuracy of the local-reaction approximation. Three rooms—an office, a corridor and a workshop—with one or more multilayer test surfaces were considered. The test surfaces were a single-glass panel, a double-drywall panel, a carpeted floor, a suspended-acoustical ceiling, a double-steel panel, and glass fibre on a hard backing. Each test surface was modeled as of extended or of local reaction. Sound-pressure levels were predicted and compared to determine the significance of the surface-reaction assumption. The main conclusions were that the difference between modeling a room surface as of extended or of local reaction is not significant when the surface is a single plate or a single layer of material (solid or porous) with a hard backing. The difference is significant when the surface consists of multilayers of solid or porous material and includes a layer of fluid with a large thickness relative to the other layers. The results are partially explained by considering the surface-reflection coefficients at the first-reflection angles.  相似文献   

5.
论证了在赝带隙光子晶体中存在一个全频率域态总数守恒规则,在完全带隙光子晶体中还存在一个局域态总数守恒规则.态总数守恒规则指出,如果一个光子晶体的态密度在某些频率范围存在相对于等效介质态密度的谷,则一定由其他频率范围内相对于等效介质态密度的峰来补偿.使用符合态总数守恒规则的态密度模型,解释了态密度调制导致的自发辐射谱增强、抑制、变窄、红移、蓝移以及谱分裂等光子晶体中的量子光学现象.该理论比较适合研究在具有赝带隙的光子晶体中大量随机分布的发光原子或分子的自发辐射行为. 关键词: 光子晶体 自发辐射 态密度 光子赝带隙  相似文献   

6.
Kawashima K 《Ultrasonics》2012,52(2):287-293
An inverse spectral procedure was applied to reconstruct the acoustic impedance profile along the thickness direction of a plate using its thickness resonance frequencies, density and thickness. For a successful reconstruction, the material-property profile must be symmetric about the mid-plane of the plate. Several cases of numerical simulations, including plates with a few layers and with a high number of layers are described. The calculated resonance frequencies were used to reconstruct the acoustic impedance profile, a process that was successful for all cases. We assume that a plate with a high number of layers, each with a different but constant acoustic impedance, simulates a plate with a smoothly varying acoustic impedance profile. It can be concluded that such a plate, which generates small, virtually undetectable, internally reflected waves, can also be reconstructed. In the special case of a plate of unknown thickness and unknown but constant density, the method is still useful, because a relative variation of the material property can be reconstructed using only the resonance frequencies. An experiment using a resonance-mode electromagnetic acoustic transducer (resonance-mode EMAT) is also described. EMAT is a non-contact ultrasonic method that can measure thickness resonance frequencies, making it appropriate for this method. Some examples of applications are measurement of the temperature profile inside a rolled metal sheet, measurement of a clad metal plate, and monitoring of a metal casting.  相似文献   

7.
In a pulsed ultrasound beam, echoes detected from a flat, circular piston of arbitrary size depend on the time-space characteristics of the entire pulse-echo measurement system, being a function of as many parameters as it takes to accurately define the system. In the limiting case of a target that is small relative to the spatial extent of an interrogating plane wave, an echo pattern is known to be a relatively simple function of the dimensionless product k0b, where k0 is the wave number and b is the radius of the target. In a companion paper preceding this one [F. E. Barber, J. Acoust. Soc. Am. 90, 8-17 (1991)], the author has described the scanning acoustic microprobe, a pulse-echo system in which the time-space properties of the interrogating waves are specified completely by k0 and a single additional parameter s0, which is the characteristic radius of a spherically symmetric, Gaussian-distributed scattering volume. In this system, the reflection pattern of a flat, circular piston of any arbitrary size is thus a function of two dimensionless parameters, namely k0b and b/s0. In this paper, this functional relationship is derived, a physical system is described, and analytical and experimental results are reported. It is shown that the diameter, orientation, and impedance mismatch properties of this simple target can be measured unambiguously over a range of target sizes from about a wavelength (2 pi/k0) to a beam diameter (about 3s0). For a typical ultrasound system, this is about a 5-1 range; i.e., a range extending to target sizes about five times smaller than can be detected in a simple B-mode imaging system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The stochastic behavior of the strain fields of coupled systems (a fractal layer, a nanotrap, and quantum dots in a fractal multilayer nanosystem) is studied theoretically and numerically. As the semiaxes of a quantum dot shorten, the amplitude of the primary peak falls, a bump emerges on it, and the region of stochastic behavior shrinks in size. As the semiaxes grow, a broadened peak with a stochastic base in the background (a halo-type signal) forms.  相似文献   

9.
The evolution of states of the composition of classical and quantum systems in the groupoid formalism for physical theories introduced recently is discussed. It is shown that the notion of a classical system, in the sense of Birkhoff and von Neumann, is equivalent, in the case of systems with a countable number of outputs, to a totally disconnected groupoid with Abelian von Neumann algebra. The impossibility of evolving a separable state of a composite system made up of a classical and a quantum one into an entangled state by means of a unitary evolution is proven in accordance with Raggio’s theorem, which is extended to include a new family of separable states corresponding to the composition of a system with a totally disconnected space of outcomes and a quantum one.  相似文献   

10.
A method of synthesis of the magnetic systems (MSs) consisting of uniformly magnetized blocks is proposed. This method allows to synthesize MSs providing maximum value of any magnetic field scalar characteristic. In particular, it is possible to synthesize the MSs providing the maximum of a field projection on a given vector, a gradient of a field modulus and a gradient of a field energy on a given directing vector, a field magnitude, a magnetic flux through a given surface, a scalar product of a field or a force by a directing function given in some area of space, etc. The synthesized MSs provide maximal efficiency of permanent magnets utilization. The usage of the proposed method of MSs synthesis allows to change a procedure of projecting in principal, namely, to execute it according to the following scheme: (a) to choose the sizes, a form and a number of blocks of a system proceeding from technological (economical) reasons; (b) using the proposed synthesis method, to find an orientation of site magnetization providing maximum possible effect of magnet utilization in a system obtained in (a). Such approach considerably reduces a time of MSs projecting and guarantees maximal possible efficiency of magnets utilization. Besides it provides absolute assurance in “ideality” of a MS design and allows to obtain an exact estimate of the limit parameters of a field in a working area of a projected MS.The method is applicable to a system containing the components from soft magnetic material with linear magnetic properties.  相似文献   

11.
Using the density matrix renormalization group (DMRG) method, we study the quantum coherence in one‐dimensional disordered spin chains and Fermi systems. We consider in detail spinless fermions on a ring, and compare the influence of several kinds of impurities in a gapless and a dimerized, gapped system. In the translation‐invariant system a so‐called site‐impurity, which can be realized by a local potential or a modification of one link, increases for repulsive interaction, and decreases for attractive interaction, upon renormalization. The weakening of two neighbouring bonds, which is a realization of a so‐called bond‐impurity, on the other hand, is healed for repulsive interaction, but enhanced for intermediate attractive interactions. This leads to a strong suppression of the quantum coherence measured by the phase sensitivity, but not to localization. Adding a local distortion to a dimerized system, we find that even the presence of a single site‐impurity increases the metallic region found in the dimerized model. For a strong dimerization and a high barrier, an additional sharp maximum, is seen in the phase sensitivity as a function of interaction, already for systems with about 100 sites. A bond‐impurity in the dimerized system also opens a small metallic window in the otherwise isolating regime.  相似文献   

12.
The ground state of an array of small single-domain magnetic particles having perpendicular anisotropy and forming a square two-dimensional lattice is studied in the presence of a magnetic field. The stability of some basic states with respect to nonuniform perturbations is analyzed in a linear approximation, and analytical model calculations and numerical simulation are used for an analysis. The entire set of states at various anisotropy constants and magnetic fields is considered when a field is normal to the array plane. Two main classes of states are possible for an infinite system, namely, collinear and noncollinear states. For collinear states, the magnetic moments of all particles are normal to the array plane. At a sufficiently high anisotropy, a wide class of collinear states exists. At low fields, a staggered antiferromagnetic order of magnetic moments takes place. An increase in the magnetic field causes an unsaturated state, and this state transforms into a saturated (ferromagnetic) state with a parallel orientation of the magnetic moments of all particles at a sufficiently high field. At a lower anisotropy, the ground state of the system is represented by noncollinear states, which include a complex four-sublattice structure for the components of the magnetic moments in the array plane and a nonzero projection of the magnetic moments of the particles onto the field direction. A phase diagram is plotted for the states of an array of anisotropic magnetic particles in the anisotropy constant-magnetic field coordinates. For a finite array of particles, sample boundaries are shown to play a significant role, which is particularly important for noncollinear states. As a result of the effect of the boundaries at a moderate field or anisotropy, substantially heterogeneous noncollinear states with a heterogeneity size comparable with the sample size can appear in the system.  相似文献   

13.
Machida and Namiki developed a many-Hilbert-spaces formalism for dealing with the interaction between a quantum object and a measuring apparatus. Their mathematically rugged formalism was polished first by Araki from an operator-algebraic standpoint and then by Ozawa for Boolean quantum mechanics, which approaches a quantum system with a compatible family of continuous superselection rules from a notable and perspicacious viewpoint. On the other hand, Foulis and Randall set up a formal theory for the empirical foundation of all sciences, at the hub of which lies the notion of a manual of operations. They deem an operation as the set of possible outcomes and put down a manual of operations at a family of partially overlapping operations. Their notion of a manual of operations was incorporated into a category-theoretic standpoint into that of a manual of Boolean locales by Nishimura, who looked upon an operation as the complete Boolean algebra of observable events. Considering a family of Hilbert spaces not over a single Boolean locale but over a manual of Boolean locales as a whole, Ozawa's Boolean quantum mechanics is elevated into empirical quantum mechanics, which is, roughly speaking, the study of quantum systems with incompatible families of continuous superselection rules. To this end, we are obliged to develop empirical Hilbert space theory. In particular, empirical versions of the square root lemma for bounded positive operators, the spectral theorem for (possibly unbounded) self-adjoint operators, and Stone's theorem for one-parameter unitary groups are established.  相似文献   

14.
Using molecular dynamics, we investigate the crystal nucleation in a Lennard-Jones fluid as a function of the degree of supercooling. At moderate supercooling, a nucleation picture applies, while for deeper quenches, the phenomenon progressively acquires a spinodal character. We show that in the nucleation regime, the freezing is a two-step process. The formation of the critical nucleus is indeed preceded by the abrupt formation of a precritical crystallite from a density fluctuation in the fluid. In contrast, as the degree of supercooling is increased, crystallization proceeds in a more continuous and collective fashion and becomes more spatially diffuse, indicating that the liquid is unstable and crystallizes by a spinodal mechanism.  相似文献   

15.
吴惠彬  梅凤翔 《物理学报》2015,64(23):234501-234501
本文研究事件空间中完整力学系统的梯度表示和分数维梯度表示, 建立系统的微分方程并将其表示为一阶形式, 给出系统成为梯度系统的条件以及成为分数维梯度系统的条件. 最后, 举例说明结果的应用.  相似文献   

16.
The wave-particle duality, as a manifestation of Bohr’s complementarity, is usually quantified in terms of path predictability and interference visibility. Various characterizations of the wave-particle duality have been proposed from an operational perspective, most of them are in forms of inequalities, and some of them are expressed in forms of equalities by incorporating entanglement or coherence. In this work, we shed different insights into the nature of the wave-particle duality by casting it into a form of information conservation in a multi-path interferometer, with uncertainty as a unified theme. More specifically, by employing the simple yet fundamental concept of variance, we establish a resolution of unity, which can be interpreted as a complementarity relation among wave feature, particle feature, and mixedness of a quantum state. This refines or reinterprets some conventional approaches to wave-particle duality, and highlights informational aspects of the issue. The key idea of our approach lies in that a quantum state, as a Hermitian operator, can also be naturally regarded as an observable, with measurement uncertainty (in a state) and state uncertainty (in a measurement) being exploited to quantify particle feature and wave feature of a quantum state, respectively. These two kinds of uncertainties, although both are defined via variance, have fundamentally different properties and capture different features of a state. Together with the mixedness, which is a kind of uncertainty intrinsic to a quantum state, they add up to unity, and thus lead to a characterization of the wave-particle-mixedness complementarity. This triality relation is further illustrated by examples and compared with some popular wave-particle duality or triality relations.  相似文献   

17.
We present a detailed comparison of the motion of a classical and of a quantum particle in the presence of trapping sites, within the framework of continuous-time classical and quantum random walk. The main emphasis is on the qualitative differences in the temporal behavior of the survival probabilities of both kinds of particles. As a general rule, static traps are far less efficient to absorb quantum particles than classical ones. Several lattice geometries are successively considered: an infinite chain with a single trap, a finite ring with a single trap, a finite ring with several traps, and an infinite chain and a higher-dimensional lattice with a random distribution of traps with a given density. For the latter disordered systems, the classical and the quantum survival probabilities obey a stretched exponential asymptotic decay, albeit with different exponents. These results confirm earlier predictions, and the corresponding amplitudes are evaluated. In the one-dimensional geometry of the infinite chain, we obtain a full analytical prediction for the amplitude of the quantum problem, including its dependence on the trap density and strength.  相似文献   

18.
Egorov RI  Soskin MS  Freund I 《Optics letters》2006,31(13):2048-2050
The canonical point singularity of elliptically polarized light is an isolated point of circular polarization, a C point. As one recedes from such a point the surrounding polarization figures evolve into ellipses characterized by a major axis of length a, a minor axis of length b, and an azimuthal orientational angle alpha: at the C point itself, alpha is singular (undefined) and a and b are degenerate. The profound effects of the singularity in alpha on the orientation of the ellipses surrounding the C point have been extensively studied both theoretically and experimentally for over two decades. The equally profound effects of the degeneracy of a and b on the evolving shapes of the surrounding ellipses have only been described theoretically. As one recedes from a C point, a and b generate a surface that locally takes the form of a double cone (i.e., a diabolo). Contour lines of constant a and b are the classic conic sections, ellipses or hyperbolas depending on the shape of the diabolo and its orientation relative to the direction of propagation. We present measured contour maps, surfaces, cones, and diabolos of a and b for a random ellipse field (speckle pattern).  相似文献   

19.
We study fundamental modes trapped in a rotating ring with a saturated nonlinear double-well potential. This model, which is based on the nonlinear Schrödinger equation, can be constructed in a twisted waveguide pipe in terms of light propagation, or in a Bose–Einstein condensate (BEC) loaded into a toroidal trap under a combination of a rotating π-out-of-phase linear potential and nonlinear pseudopotential induced by means of a rotating optical field and the Feshbach resonance. Three types of fundamental modes are identified in this model, one symmetric and the other two asymmetric. The shape and stability of the modes and the transitions between different modes are investigated in the first rotational Brillouin zone. A similar model used a Kerr medium to build its nonlinear potential, but we replace it with a saturated nonlinear medium. The model exhibits not only symmetry breaking, but also symmetry recovery. A specific type of unstable asymmetric mode is also found, and the evolution of the unstable asymmetric mode features Josephson oscillation between two linear wells. By considering the model as a configuration of a BEC system, the ground state mode is identified among these three types, which characterize a specific distribution of the BEC atoms around the trap.  相似文献   

20.
A quantum analysis is presented of the motion and internal state of a two-level atom in a strong standing-wave light field. Coherent evolution of the atomic wave-packet, atomic dipole moment, and population inversion strongly depends on the ratio between the detuning from atom-field resonance and a characteristic atomic frequency. In the basis of dressed states, atomic motion is represented as wave-packet motion in two effective optical potentials. At exact resonance, coherent population trapping is observed when an atom with zero momentum is centered at a standing-wave node. When the detuning is comparable to the characteristic atomic frequency, the atom crossing a node may or may not undergo a transition between the potentials with probabilities that are similar in order of magnitude. In this detuning range, atomic wave packets proliferate at the nodes of the standing wave. This phenomenon is interpreted as a quantum manifestation of chaotic transport of classical atoms observed in earlier studies. For a certain detuning range, there exists an interval of initial momentum values such that the atom simultaneously oscillates in an optical potential well and moves as a ballistic particle. This behavior of a wave packet is a quantum analog of a classical random walk of an atom, when it enters and leaves optical potential wells in a seemingly irregular manner and freely moves both ways in a periodic standing light wave. In a far-detuned field, the transition probability between the potentials is low, and adiabatic wave-packet evolution corresponding to regular classical motion of an atom is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号