首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present our extensive research into magnetic anisotropy. We tuned the terrace width of Si(111) substrate by a novel method: varying the direction of heating current and consequently manipulating the magnetic anisotropy of magnetic structures on the stepped substrate by decorating its atomic steps. Laser-induced ultrafast demagnetization of a Co Fe B/Mg O/Co Fe B magnetic tunneling junction was explored by the time-resolved magneto-optical Kerr effect(TRMOKE) for both the parallel state(P state) and the antiparallel state(AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the AP state than those in the P state. These behaviors are attributed to the ultrafast spin transfer between two Co Fe B layers via the tunneling of hot electrons through the Mg O barrier. Our observation indicates that ultrafast demagnetization can be engineered by the hot electron tunneling current. This opens the door to manipulate the ultrafast spin current in magnetic tunneling junctions. Furthermore, an all-optical TR-MOKE technique provides the flexibility for exploring the nonlinear magnetization dynamics in ferromagnetic materials, especially with metallic materials.  相似文献   

2.
Thermoelectric power measurements have been performed for an ordered oxygen-deficient perovskite, HoBaCo2O5.5, in which the alternative layers of CoO6 octahedra and of [CoO(5)](2) bipyramids are occupied by Co3+ species. The T-dependent Seebeck coefficient S shows a clear change of the conduction regime at the metal-insulator (MI) transition (T(MI) approximately 285 K). The sign change of S from S<0 to S>0 can be explained assuming that a spin state transition occurs at T(MI). In the metallic state, Co2+ e(g) electrons are moving in a broad band on the background of high or intermediate spin Co3+ species. In contrast, the insulating behavior may result from the Co3+ spin state transition to a low-spin Co3+ occurring in the octahedra. In this phase the transport would occur by hopping of the low-spin Co(4+)t(2g) holes, whereas the high-spin Co2+ electrons become immobilized due to a spin blockade.  相似文献   

3.
The influence of the Dresselhaus spin-orbit coupling on spin polarization by tunneling through a disordered semiconductor superlattice was investigated. The Dresselhaus spin-orbit coupling causes the spin polarization of the electron due to transmission possibilities difference between spin up and spin down electrons. The electron tunneling through a zinc-blende semiconductor superlattice with InAs and GaAs layers and two variable distance InxGa(1−x)As impurity layers was studied. One hundred percent spin polarization was obtained by optimizing the distance between two impurity layers and impurity percent in disordered layers in the presence of Dresselhaus spin-orbit coupling. In addition, the electron transmission probability through the mentioned superlattice is too much near to one and an efficient spin filtering was recommended.  相似文献   

4.
采用第一性原理方法,对Sc掺杂SnO2以及含有O空位的Sc掺杂SnO2的电子结构和磁学性质进行了计算。结果表明SnO2晶格中存在两种本征磁性来源,分别为Sc掺杂诱导的未配对O-2p态电子的自旋极化和O空位诱导的未配对Sn-5p态电子的自旋极化。由于两种未配对的弱束缚电子分别由电离施主和受主诱导产生,因此二者之间存在电荷补偿效应,在特定配比下能够使SnO2晶格出现磁性猝灭。  相似文献   

5.
By use of the scattering matrix method, we investigate the coupling effects of layers on spin-polarized transport through semimagnetic semiconductor heterostructures with triple paramagnetic layers. Due to the coupling between double non-magnetic layers or among triple paramagnetic layers, spin tunneling exhibits interesting and complex features, which are determined by the structural configuration, the external fields as well as the spin orientations. It is shown that for electrons with either spin orientation tunneling through the symmetric or asymmetric heterostructures with triple paramagnetic layers, transmission resonances can approach the optimum under several biases. Moreover, for asymmetric structures, the resonant enhancement can occur under both several positive and negative biases. The spin-dependent resonant enhancement is also clearly reflected in the current density. In addition, for spin electrons traversing the multilayer heterostructure, the resonant splitting occurs in the transmission, which shows rich variations with the bias. These interesting results may be helpful to the development of spintronic devices. Received 28 April 2001  相似文献   

6.
The effect of ferromagnetic layers on the spin polarization of holes and electrons in ferromagnet-semiconductor superlattices with a fixed Mn δ-layer thickness of 0.11 nm and different GaAs interlayer thicknesses varying in the range from 2.5 to 14.4 nm and a fixed number of periods (40) is studied by means of hot-electron photoluminescence (HPL). Here, our study of the HPL demonstrates that the holes in δ-layers of (Ga,Mn)As DMS occupy predominantly the Mn acceptor impurity band. The width of the impurity band decreases with the increase of the interlayer distance. We also found that an increase in the GaAs interlayer thickness softens the magnetic properties of the ferromagnetic layers as well as reduces the carrier polarization. It is demonstrated that the hole spin polarization in the DMS layers and spin polarization of electrons in nonmagnetic GaAs are proportional to the sample magnetization.  相似文献   

7.
Understanding the mechanisms controlling the spin coherence of electrons in semiconductors is essential for designing structures for quantum computing applications. Using a pulsed electron paramagnetic resonance spectrometer, we measure spin echoes and deduce a spin coherence time (T2) of up to 3 mus for an ensemble of free two-dimensional electrons confined in a Si/SiGe quantum well. The decoherence can be understood in terms of momentum scattering causing fluctuating effective Rashba fields. Further confining the electrons into a nondegenerate (other than spin) ground state of a quantum dot can be expected to eliminate this decoherence mechanism.  相似文献   

8.
Polarisation of the particle spin can be an important problem for different plasmas. In this article, the contribution of the electron spin on the growth rate of the temperature anisotropy of electromagnetic instabilities has been investigated. Results show that polarisation of the electron spin will restrict the instability growth rate while instability can survive due to the spin-depolarised electrons even when the requested temperature anisotropy is vanished. Instability can reach the damping state exponentially due to the spin-polarised electrons while it can grow linearly due to the spin-depolarised (the semi-classical) electrons.  相似文献   

9.
The role of thermal scattering in spin-dependent transport of hot electrons at 0.9 eV is studied using a spin-valve transistor with a soft Ni(80)Fe(20)/Au/Co base. Spin-dependent scattering makes the collected electron current depend sensitively on the magnetic state of the base. The magnetocurrent reaches 560% at 100 K, decays with increasing temperature, and a huge effect of 350% still remains at room temperature. The results demonstrate that thermal spin waves produce quasielastic spin-flip scattering of hot electrons, resulting in mixing of the two spin channels.  相似文献   

10.
We study the scattering of an electron of a 2DEG through a large point contact separating a region where the electrons are free and a region where the Rashba spin-orbit coupling is present. The scattering depends dramatically on the electron incidence angle showing double refraction within the Rashba region. For incidence not normal to the interface the electron spin state is not conserved. The calculated conductance exhibits an oscillating behavior as a function of spin state of the incident electrons with different spin down and spin up currents. Our model describes both a ferromagnetic semimetallic source and a simple metallic injection electrode. In the first case the electrons are injected in a pure spin state and in the second one they are unpolarized, that is in a statistical mixture of spin up and down states. In both the cases the passage through the large point contact produces spin polarized currents.Received: 30 July 2003, Published online: 23 December 2003PACS: 85.75.Hh Spin polarized field effect transistors - 72.25.-b Spin polarized transport - 73.23.Ad Ballistic transport  相似文献   

11.
吕厚祥  石德政  谢征微 《物理学报》2013,62(20):208502-208502
在群速度概念的基础上, 研究了自旋极化电子隧穿通过铁磁体/半导体(绝缘体)/铁磁体异质结时, 渡越时间随两端铁磁层中磁矩夹角变化的关系. 研究结果表明: 当中间层为半导体层时, 由于半导体层中的Rashba自旋轨道耦合强度的影响, 自旋向上电子和自旋向下电子的渡越时间差会在两铁磁层相对磁矩夹角为π/2和3π/2附近出现一个极小值. 当中间层为绝缘体层时, 势垒高度的变化会导致不同取向的自旋极化电子渡越时间差的变化, 并当势垒高度超过一临界值时发生翻转. 关键词: 铁磁体/半导体(绝缘体)/铁磁体异质结 Rashba自旋轨道耦合强度 渡越时间 磁矩  相似文献   

12.
Monocrystalline silicon samples of different impurity contents have been irradiated with 1.5 MeV electrons in order to produce divacancies in their negative charge state. In these samples different combinations of defects have been observed with electron paramagnetic resonance. The conditions for production and observation of these defects are compared. For two new EPR spectra, labelled (Si-) NL11 and (Si-) NL12, the spin Hamiltonian parameters are reported. For NL11, which arises from an S = 1 spin state, the obvious identification with the neutral charge state of the divacancy can not be confirmed.  相似文献   

13.
Photoemitted electrons move in a vacuum; their quantum state can be completely characterized in terms of energy, momentum and spin polarization by spin-polarized photoemission experiments. A review article in this issue by Heinzmann and Dil (2012 J. Phys.: Condens. Matter 24 173001) considers whether the measured spin properties, i.e. the magnitude and direction of the spin polarization vector, can be traced back to the quantum state from which these electrons originate. The careful conclusion is that they can, which is highly relevant in view of the current interest in these experiments and their application to topological insulators, where the spin-orbit interaction produces spin-polarized surface states.  相似文献   

14.
The phenomena of spin tunneling and spin torque transfer between magnetic layers of a tunnel spin-valve setup under weak and strong field emissions of spin-polarized electrons are considered. Bifurcational features of changes in the macrospin states under the impact of a tunnel current are discussed for varying directions of the spin-polarization vector.  相似文献   

15.
We report the observation of a net spin polarization in the n=1 image-potential state at the Cu(001) surface. The spin polarization is achieved by spin-selective multiphoton excitation of electrons from the spin-orbit split Cu d bands to the image-potential state using circularly polarized ultrafast light pulses. We show that by tuning the exciting photon energy, we can adjust the resonant coupling of the image-potential state to d bands of different double-group symmetry. This allows us to tune the spin polarization injected into the image-potential state.  相似文献   

16.
We present recent studies of electronic excitations in nanofabricated AlGaAs/GaAs semiconductor quantum dots (QDs) by resonant inelastic light scattering. The resonant light scattering spectra are dominated by excitations from parity-allowed inter-shell transitions between Fock–Darwin levels. In QDs with very few electrons the resonant spectra are characterized by distinct charge and spin excitations that reveal the strong impact of both exchange and correlation effects. A sharp inter-shell spin excitation of the triplet spin QD state with four electrons is identified.  相似文献   

17.
Within the simplest model of metals, namely a gas of electrons with Coulomb interactions, in the presence of a uniform background of positive charge to enforce electric neutrality of the system, we have derived a mechanism by which the Coulomb interaction between the electrons generates a new kind of magnetism. The ground state of the metal is represented by a magnetically ordered state described by a non-local magnetic field. This non-local magnetic field does not produce spin polarisation of electrons, but induces a special long range correlation between electrons of opposite spin. This mechanism results in a theoretical value for the binding energy per electron, which is lower than the corresponding value for the unmagnetised state of the metal. The new magnetic order, proposed and analysed theoretically here, can in principle be experimentally tested.  相似文献   

18.
We investigate theoretically the effects of Dresselhaus spin–orbit coupling (DSOC) on the spin-dependent current and shot noise through II–VI diluted magnetic semiconductor/nonmagnetic semiconductor (DMS/NMS) barrier structures. The calculation of transmission probability is based on an effective mass quantum-mechanical approach in the presence of an external magnetic field applied along the growth direction of the junction and also applied voltage. We also study the dependence of spin-dependent properties on external magnetic field and relative angle between the magnetizations of two DMS layers in CdTe/CdMnTe heterostructures by including the DSOC effect. The results show that the DSOC has great different influence on transport properties of electrons with spin up and spin down in the considered system and this aspect may be utilized in designing new spintronics devices.  相似文献   

19.
Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.  相似文献   

20.
The analytic solutions of the weak ion acoustic double layers in warm unmagnetized and magnetized plasma have been presented with the fluid equation for ions and an arbitrary equation of state for the hot electrons. It has been shown that double layers solutions exist for both magnetized and unmagnetized plasmas when two Boltzmann model for electrons are considered. The potential, the thickness and the velocity of such type of double layers have been calculated and compared with those for the cold plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号