首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lifetime spectra for linear and branched polyethylene have been measured as a function of temperature. The longest lifetime, τ3, and its intensity, I3, are traced over a temperature range of 105–370 K. The lifetime decreases with decreasing temperature, and upon reheating the plot is retraced. I3 has a minimum near 265 K with considerable hysteresis in the cooling/heating cycle. At the lower temperatures the increase in I3 is attributed to source irradiation.  相似文献   

2.
The thermal behaviour of (n-CaH2n+1NH2)2ZnCl2 complexes with n = 6, 8, … 16 has been investigated by DSC and by temperature variable IR and X-ray powder diffraction techniques. Complexes with n = 12,14,16 show solid—solid phase transition which are “melting” transitions of the hydrocarbon regions of the structure. The crystal structure of both the low and the high temperature polymorphs is characterized by the piling of sandwiches, each formed by an “inorganic” layer sandwiched between two alkylammonium layers.  相似文献   

3.
[Re2(Ala)4(H2O)8](ClO4)6 (Re=Eu, Er; Ala=alanine) were synthesized, and the low-temperature heat capacities of the two complexes were measured with a high-precision adiabatic calorimeter over the temperature range from 80 to 370 K. For [Eu2(Ala)4(H2O)8](ClO4)6, two solid–solid phase transitions were found, one in the temperature range from 234.403 to 249.960 K, with peak temperature 243.050 K, the other in the range from 249.960 to 278.881 K, with peak temperature 270.155 K. For [Er2(Ala)4(H2O)8](ClO4)6, one solid–solid phase transition was observed in the range from 270.696 to 282.156 K, with peak temperature 278.970 K. The molar enthalpy increments, ΔHm, and entropy increments,ΔSm, of these phase transitions, were determined to be 455.6 J mol−1, 1.87 J K−1 mol−1 at 243.050 K; 2277 J mol−1, 8.43 J K−1 mol−1 at 270.155 K for [Eu2(Ala)4(H2O)8](ClO4)6; and 4442 J mol−1, 15.92 J K−1 mol−1 at 278.970 K for [Er2(Ala)4(H2O)8](ClO4)6. Thermal decompositions of the two complexes were investigated by use of the thermogravimetric (TG) analysis. A possible mechanism for the thermal decomposition is suggested.  相似文献   

4.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

5.
We report the dependence of the ortho-positronium (o-Ps) lifetime τ3 and intensity I3 on the thermodynamic history of a number of amorphous homopolymer and copolymer glasses that were pressure-densified at pressures up to 200 MPa. Small macroscopic volume changes up to 1.85% yield large microscopic volume changes in the pressure-densified glasses, i.e., τ3 decreases by a maximum of 9%, while I3 remains constant, and the Simha–Somcynsky free-volume fraction decreases by a maximum of 31% and correlates with the free-volume size .  相似文献   

6.
The solid–liquid equilibria of the ternary system H2O–Fe(NO3)3–Co(NO3)2 were studied by using a synthetic method based on conductivity measurements.

Two isotherms were established at 0 and 15 °C, and the stable solid phases which appear are the iron nitrate nonahydrate (Fe(NO3)3·9H2O), the iron nitrate hexahydrate (Fe(NO3)3·6H2O), the cobalt nitrate hexahydrate (Co(NO3)2·6H2O) and the cobalt nitrate trihydrate (Co(NO3)2·3H2O).  相似文献   


7.
Two structural phase transitions at 263 and 252 K are detected in a new isobutylammonium crystal (i-C4H9NH3)3Bi2Br9 by means of differential scanning calorimetry (DSC) and dielectric studies. Internal vibrations modes of (i-C4H9NH3)3Bi2Br9 are studied through their phase transitions using the infrared spectrscopy. The infrared studies show that the vibrational state of isobutylammonium cations changes weakly during the phase transition at 252 K. The 263 K phase transition is not reflected in the infrared spectra. The lower temperature phase transition (252 K) is believed to be governed by the reorientational motion of the isobutylammonium cations and may be classified as an ‘order–disorder' type.  相似文献   

8.
A structural study of odd-numbered n-alkane (Cn) binary mixtures (C21 : C23) was carried out on powder samples using a Guinier-de Wolff camera with increasing concentration of n-C23 at 293 K.

Despite the reports in the literature, these molecular alloys do not form an orthorhombic continuous homogeneous solid solution to C21 from C23 at “low temperature”. Instead, as already observed in two even-numbered Cn systems, X-ray diffraction results show the existence of seven solid solutions as the molar concentration of C23 increases: four terminal solid solutions, denoted β0(C210(C23), isostructural with the “low temperature” phase of pure C21 and C23 (Pbcm), β′0(C21) and β′0(C23), identical to the phase β′0 which appears in pure C23 above the δ transition, and three orthorhombic intermediate solid solutions, designated β″1, β′1 and β″2.

On the basis of powder X-ray photographs, the phases β″1 and β″2 (C21 : C23) are indistinguishable, and they are isostructural with the intermediate solid solution β″ of the even-numbered Cn binary systems (C22 : C24) and (C24 : C26). The phase β′1(C21 : C23) is also isostructural with the two indistinguishable intermediate solid solutions β′1 and β′2 of the molecular alloys (C22 : C24) and (24 : C26).

From this study and our other laboratory results, the sequences of appearance of the solid solutions and the structural identities between these phases are established at “low temperature” for all the binary molecular alloys of consecutive Cn (odd-odd, even-even or odd-even: 19 < n < 27) when increasing the solute concentration.  相似文献   


9.
Unique information about the properties of free-volume sites in polymers is gained from Positron Annihilation Lifetime (PAL) measurements. After calibration with data from other techniques the method may be used to determine free-volume fractions. From pressure–volume–temperature (PVT) and PAL (ortho-Ps lifetime τ3) data, measured on identical amorphous poly(methyl methacrylate) (PMMA) samples with controlled thermal histories, we find a linear relationship between free-volume fractions, derived from PVT measurements, the Simha–Somcynsky equation-of-state theory and the mean subnanometer free-volume size both below and above the glass transition temperature.  相似文献   

10.
A novel dinuclear complex [Cu2(μ-L)4(HL)2] (1) was isolated from starting 2-pyridone (HL) via a resonance and a tautomeric transformation. Each copper centre is in a square-pyramidal coordination sphere, defined by two oxygen atoms (Cu–O4 1.978(5), Cu–O11 1.964(4) Å) and two nitrogen atoms (Cu–N2 2.003(5), Cu–N3 2.007(5) Å) of four bridging deprotonated pyridin-2-olates and an oxygen atom on the top from a neutral 2-pyridone (Cu–O2 2.227(5) Å), analogous to tetracarboxylate paddle-wheel complexes. Compound 1 was compared with mixed pyridin-2-olato/methanoato analogues [Cu2(μ-HCO2)2(μ-L)2(HL)2] · 2CH3CN (2) and [Cu2(μ-HCO2)2(μ-L)2(HL)2] (2a) (2a is an air stable form obtained from 2 outside mother-liquid). The EPR spectra of air stable 1 and 2a show three signals Hz1, H2 and Hz2, typical for the binuclear systems with spin S = 1, both revealing strong antiferromagnetism 2J = −334 (1) and −324 cm−1 (2a). Interestingly, only for 1 additional H1 signal at 100 mT is noticed (D(1) = 0.293 cm−1 <  = 0.320 cm−1 < D(2a) = 0.347 cm−1). On the other hand, several broad signals in the 100–450 mT region, only in the high temperature spectrum for 2a are observed. These results are in agreement with the magnetic susceptibility analysis.  相似文献   

11.
UV absorption of cyclic carbosilanes (SiMe2)4(CH2)n, N = 1–4 (1–4), and Si4Me10 (5) provides an experimental counterpart to the singlet transition energy and intensity correlation diagrams for the syn-anti conformational transformation in tetrasilane. A new third transition is found between the two previously known singlet transitions. Transition energies are nearly independent of the dihedral angle, while intensities vary widely. All trends agree with CIS/3–21G*//HF/3–21G* calculations. The Sandorfy C and ladder C models of σ conjugation fail to describe electronically excited states of tetrasilane, since they do not consider the lateral bonds to substituents.  相似文献   

12.
The results of high pressure dielectric studies of 4-n-pentyl-4'-cyanobiphenyl (5CB) are analysed in terms of theories of the nematic state. The retardation factor g∥ = τ∥/τ0 and the effective, single-particle potential of mean torque were calculated at the nematic-isotropic transition temperature TNI and along the isothermal, isobaric and isochoric paths within the nematic phase of 5CB. The potential of mean torque is compared with the order parameter known for the same conditions. The values of parameter γ relating the potential to the volume is discussed.  相似文献   

13.
Reactions of Co33-CBr)(μ-dppm)(CO)7 with {Au[P(tol)3]}2{μ-(CC)n} (n=2–4) have given {Co3(μ-dppm)(CO)7}{μ33-C(CC)nC} [n=2 (1), 3 (2), 4 (3)] containing carbon chains capped by the cobalt clusters. Tetracyanoethene reacts with 2 to give {Co3(μ-dppm)(CO)7}233-C(CC)2C[=C(CN)2]C[=C(CN)2]C} (4). X-ray structural characterisation of 1, 3 and 4 are reported, that for 3 being the first of a cluster-capped C10 chain.  相似文献   

14.
Reactions of FcCCH (a), HCCCCFc (b) and FcCCCCFc (c) with Ru3(CO)10(NCMe)2 (all) and Ru3(μ-dppm)(CO)10 (b and c only) are described. Among the products, the complexes Ru33-RC2R′)(μ-CO)(CO)9 (R=H, R′=Fc 1, CCFc 2; R=R′=Fc 5), Ru3(μ-H)(μ3-C2CCFc)(μ-dppm)(CO)7 3, Ru33-FcC2CCFc)(μ-dppm)(μ-CO)(CO)7 6 and Ru33-C4Fc2(CCFc)2}(μ-dppm)(μ-CO)(CO)5 7 were characterised, including single-crystal structure determinations for 1, 3, 5 and 7; that of 7 did not differ significantly from an earlier study of a mixed CH2Cl2–C6H6 solvate.  相似文献   

15.
The molecular structures of n-hexane were determined by RHF/4-21G ab initio geometry optimization at 30° grid points in its three-dimensional τ1(C11–C8–C5–C1), τ2(C14–C11–C8–C5), τ3(C17–C14–C11–C8) conformational space. Of the resulting 12×12×12=1728 grid structures, 468 are symmetrically non-equivalent and were optimized constraining the torsions τ1, τ2, and τ3 to the respective grid points, while all other structural parameters were relaxed without any constraints. From the results, complete parameter surfaces were constructed using natural cubic spline functions, which make it possible to calculate parameter gradients, |P|=[(∂P/∂τi)2+(∂P/∂τj)2]1/2, where P is a C–C bond length or C–C–C angle. The parameter gradients provide an effective measure of the torsional sensitivity of the system and indicate that dynamic activities in one part of the molecule can significantly affect the density of states, and thus the contributions to vibrational entropy, in another part. This opens the possibility of dynamic entropic conformational steering in complex molecules; i.e. the generation of free energy contributions from dynamic effects of one part of a molecule on another. When the conformational trends in the calculated C–C bond lengths and C–C–C angles are compared with average parameters taken from some 900 crystallographic structures containing n-hexyl fragments or longer C–C bond sequences, some correlation between calculated and experimental trends in angles is found, in contrast to the bond lengths for which the two sets of data are in complete disagreement. The results confirm experiences often made in crystallography. That is, effects of temperature, crystal structure and packing, and molecular volume effects are manifested more clearly in bond lengths than bond angles which depend mainly on intramolecular properties. Frequency analyses of the τ1, τ2 and τ3 torsional angles in the crystal structures show conformational steering in the sense that, if τ1 is trans peri-planar (170°≤τ1≤180°; −180°≤τ1≤−170°), the values of τ2 and τ3 are clustered closely around the ideal gauche (±60°) and trans (±180°) positions. In contrast, when τ1 is in the region (50°≤τ1≤70°), there is a definite increase in the populations of τ2 and τ3 at −90 and −150°.  相似文献   

16.
Irena Szczygiel   《Thermochimica Acta》2001,370(1-2):125-128
The phase diagram of the system CePO4–K3PO4 has been determined based on investigations by differential thermal analysis, X-ray powder diffraction, IR spectroscopy and optical microscopy. The system contains only one intermediate compound K3Ce(PO4)2, which melts incongruently at (1500±20)°C. This compound is stable down to room temperature and exhibits a polymorphic transition at 1180°C. It was confirmed that the low-temperature form β-K3Ce(PO4)2 crystallizes in a monoclinic system, space group P21/m with unit cell parameters a=9.579 (5), b=5.634 (6), c=7.468 (5) Å; =γ=90°, β=90.81 (3)°; V=403.083 Å3.  相似文献   

17.
A series of novel heterobimetallic crown ether-like polyoxadiphosphaplatinaferrocenophanes cis-[1,1′-Fc(CH2O(CH2CH2O)nCH2CH2PPh2)2]PtCl2 (n=1–3) (4a–c) was synthesized in good yield by cyclization of the bis(phosphine) ligands 1,1′-Fc(CH2O(CH2CH2O)nCH2CH2PPh2)2 (n=1–3) (3a–c) and (PhCN)2PtCl2 under high dilution conditions in CH2Cl2. The bisphosphines 3a–c are obtained by reaction of the corresponding diols 1,1′-Fc(CH2O(CH2CH2O)nCH2CH2OH)2 (n=1–3) (1a–c) with: (i) CH3SO2Cl in CH2Cl2 and (ii) LiPPh2 in THF. Although the X-ray crystal structure of 4a shows that the cavity is large enough for the encapsulation of small metal cations, inclusion experiments of 4a–c with Group 1 cations, and Mg2+, or NH4+ in solution applying NMR titration and cyclovoltammetric methods reveal no evidence for the formation of host–guest complexes for 4a,b. In the case of 4c only the addition of Na+ or K+ leads to an insignificant effect.  相似文献   

18.
The IR and Raman spectra of [(CH3)3NH]3Sb2Cl9 (A), [(CH3)3NH]3Bi2Cl9 (B) and two of their mixed crystals containing respectively 33% (AB.33) and 42% Bi (AB.42) are analyzed and compared. A and AB.33 show ferroelectric–paraelectric phase transition at 364 K and 344 K, respectively. AB.42 and B are paraelectric in the temperature range between 90 and 365 K. Most of the vibrational modes show continuous changes, with the temperature, in the IR frequencies or intensities with no soft mode behavior. However, characteristic ν(NHCl) and δ(NHCl) vibrations of weakly hydrogen-bonded species are only observed in A and AB.33 below the temperature of the phase transition and are related to the ferroelectricity. The evolution of the IR spectra with the temperature suggests that the ferroelectric properties are connected with the reorientation of the cations which needs a breaking of the weak NHCl hydrogen bonds in the paraelectric phase.  相似文献   

19.
Measurements of the rotational viscosity γ1 and the density are presented for a mixture of 4'-methoxybenzylidenebutylaniline (MBBA) and its ethoxy homologue EBBA and a mixture of cyclohexylphenylnitriles (ZLI 2413 from Merck AG) as a function of temperature and pressure. A new set-up for the measurement of densities under pressures of up to 3kbar is described. It is shown that the pressure dependence of the kinematic rotational viscosity γ1/ρ and the temperature dependence of γ1 under isobaric and isochoric conditions have common features with that of the shear viscosity of isotropic liquids. Furthermore, it is found that the curves γ1 = f(1/T) for constant p and γ1 = g(ρ) for constant T can be shifted one onto another by an appropriate shift of the scale of the independent variable.  相似文献   

20.
The one-pot reaction between the novel proton transfer compound (pydaH2)2+(phendc)2−, LH2, and Cu(II) afforded the compounds (pydaH)2[Cu(phendc)2]·10H2O, 1, and (pydaH)2[Cu(phendc)(phendcH)]2·5H2O, 2, where pyda=2,6-diaminopyridine, and phendcH2=1,10-phenanthroline-2,9-dicarboxylic acid. The single crystal X-ray diffraction analysis of 1 and 2 revealed that these are two novel self-assembled 3D Cu(II) complex-organo-networks, in which (pydaH)+ ions and [Cu(phendc)2]2− or complex units are held together by ion pairing, H-bonding, and π–π interactions. Magnetic measurements over the temperature range 1.8–310 K revealed no significant magnetic coupling between Cu(II) centers in 1 or 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号