首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the course of pathogens penetrating the plant cell, besides of chemical secretion, the pathogens may cause mechanical signal by the physical pressure on the plant cell. In the current study, we took the stress as the mechanical signal elicitor to find the effect of plant resistance induced by stress. The results showed that an appropriate stress stimulation can evidently improve the plant resistance. However, disruption the plasma membrane–cell wall adhesion will absolutely eliminate this kind of inducement effect, which suggests that the plant resistance inducement by stress depend on the adhesion of plasma membrane–cell wall. Also we found that stress stimulation may cause synthesis of lignin and increase the activity of phenylalaninc ammonial lyase (PAL) chitinase and β-1,3-glucanase obviously. The results showed that stress stimulation may not only enhance ability of the plant cell resistant to pathogen penetration but also elicit the accumulation of pathogens suppression or antimicrobial chemical substance in the plant cell.  相似文献   

2.
The accumulation of phytoalexin in cucumber plant after stress   总被引:1,自引:0,他引:1  
During the course of pathogens penetrating the plant cell, besides of chemical secretion, the pathogens may cause mechanical signal by the physical pressure on the plant cell. In the current study, we use the pressure as the stress signal to study the induction in plant resistance and the effect of accumulation of phytoalexin. We found that stress can induce the resistance in cucumber seeding significantly. Peptides contained RGD motif can specific block the adhesion between plant cell wall and plasma membrane. When breaking the plant cell wall and plasma membrane by using RGD peptides, the stress induction effect is almost absolutely eliminated. The results of assay with TLC and HPLC showed that stress stimulation could increase the accumulation of cucumber seeding phytoalexin. So, we can conclude that the accumulation of phytoalexin is one possible reason of improve the stress induced resistance. When block the adhesion between plant cell wall and plasma membrane by RGD, there are only part of accumulation of phytoalexin. The results suggest that stress induced resistance and accumulation of phytoalexin of plant is required for the adhesion of plant cell wall–plasma membrane.  相似文献   

3.
Stress induced plant resistance and enzyme activity varying in cucumber   总被引:1,自引:0,他引:1  
When pathogens penetrate plant cells, some chemical secretions are elicited, and the mechanical signals in plant cell may be induced by the simultaneous physical pressure to change. Based on the previous cognitions, we investigated the plant resistance and the variation of anti-disease enzyme activity in cucumber leaves after mechanical stress loading. Results showed that the appropriate mechanical stimulation could significantly improve plant resistance and alter the activity of phenylalanine ammonial lyases (PAL) and POD, leading to synthesis of lignin. However, we found that the effects of the stress on these cellular fundamental events were eliminated when the adhesion between plasma membrane and cell wall was disrupted. We speculated that mechanical signal transduction in plants depend on the adhesion of plasma membrane–cell wall.  相似文献   

4.
In the current study, we found that the stress stimulus can act as a kind of elicitor, which can efficiently induce the resistance of cucumber against fungal pathogen. After the treatment of the stress stimulus on leaves, the activities of resistance-related enzymes were increased significantly. Such as phenylamine ammonia lyase (PAL), peroxidase (POD) and polyphenoloxidase (PPO), which are strongly associated with the plant disease resistance. Also the expression of pathogenesis-related protein (PR protein) were activated by stress stimulus, with the results that the activities of chitinase and beta-l,3-glucanase were increased obviously. The data showed that one of the mechanism of stress stimulus induction plant resistance may act via eliciting the metabolism related disease resistance within plant, which can produce many suppressing and antimicrobial compounds to against pathogens infection efficiently.  相似文献   

5.
Inducer can induce new active composition and increase the content of the active composition in the plant. In this paper, we investigated the synthesis and accumulation of phytoalexin in cucumber seedlings which were induced by chemical inducer of the salicylic acid (SA) and physical inducer. Analyzed by experiment of antifungal activity, thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC), the result was that both SA and stress can induce the synthesis and accumulation of phytoalexin in cucumber seedlings. But the content of phytoalexin induced by SA was lower than it induced by stress. And in this paper, another conclusion was that the transduction of physical signal and the chemical signal in the plant depended on the adhesion between cell wall and plasma and active oxidative species producted by stimulation.  相似文献   

6.
Silicon is the second-most abundant element on the surface of the earth, and has been considered important for plant growth and development. As for its role in enhanced plant disease resistance, silicon has been reported to reinforce the physical barrier against the penetration and colonization of pathogens. Rice leaves of silicon-treated plants and control plants at the eight- and twelve-leaf growth stages were analyzed by 29Si solid-state nuclear magnetic resonance spectroscopy to characterize the silicon-induced, cell wall fortification of rice leaves, which demonstrated an ability to counter a pathogen attack.  相似文献   

7.
Plant cell cultures provide a large potential for the production of secondary metabolites. Through the application of different physical and chemical cell stress factors, we investigated the production of the secondary metabolites in plant cell cultures. The effects of pulsed electric field (PEF) and ethephon on growth and secondary metabolism, particularly anthocyanins and phenolic acids synthesis, were investigated by using suspension culture of Vitis vinifera L. cv. Gamay Fréaux as a model system. Anthocyanins were measured by spectrophotometer and extracellular phenolic acids were determined by high-performance liquid chromatography. The compounds were identified by liquid chromatography–mass spectrometry and nuclear magnetic resonance. After the treatments with PEF and ethephon, the concentrations of anthocyanins and phenolic acids in cell culture were higher than in the control, without loss of biomass. The combination of PEF treatment and ethephon improved secondary metabolites formation. Production levels of extracellular phenolic acids, 3-O-glucosyl-resveratrol were increased by PEF and ethephon treatments. The results show that PEF induced a defense response of plant cells and may have altered the cell/membrane’s dielectric properties. PEF, an external stimulus or stress, is proposed as a promising new abiotic elicitor for stimulating secondary metabolites biosynthesis in plant cell cultures.  相似文献   

8.
Plants have innate immune systems or defense mechanisms that respond to the attack of pathogenic microorganisms. Unlike mammals, they lack mobile defense cells, so defense processes depend on autonomous cellular events with a broad repertoire of recognition to detect pathogens, which compensates for the lack of an adaptive immune system. These defense mechanisms remain inactive or latent until they are activated after exposure or contact with inducing agents, or after the application of the inductor; they remain inactive only until they are affected by a pathogen or challenged by an elicitor from the same. Resistance induction represents a focus of interest, as it promotes the activation of plant defense mechanisms, reducing the use of chemical synthesis pesticides, an alternative that has even led to the generation of new commercial products with high efficiency, stability and lower environmental impact, which increase productivity by reducing not only losses but also increasing plant growth. Considering the above, the objective of this review is to address the issue of resistance induction with a focus on the potential of the use of oligosaccharides in agriculture, how they are recognized by plants, how they can be used for commercial products and perspectives.  相似文献   

9.
Light has a key impact on the outcome of biotic stress responses in plants by providing most of the energy and many signals for the deployment of defensive barriers. Within this context, chloroplasts are not only the major source of energy in the light; they also host biosynthetic pathways for the production of stress hormones and secondary metabolites, as well as reactive oxygen species and other signals which modulate nuclear gene expression and plant resistance to pathogens. Environmental, and in particular, light‐dependent regulation of immune responses may allow plants to anticipate and react more effectively to pathogen threats. As more information is gathered, increasingly complex models are developed to explain how light and reactive oxygen species signaling could interact with endogenous defense pathways to elicit efficient protective responses against invading microorganisms. The emerging picture places chloroplasts in a key position of an intricate regulatory network which involves several other cellular compartments. This article reviews current knowledge on the extent and the main features of chloroplast contribution to plant defensive strategies against biotic stress.  相似文献   

10.
Plant cells secrete a wide variety of defense‐related proteins into the extracellular space or apoplast in response to pathogen attack. One of these, mannitol dehydrogenase (MTD), is normally a cytoplasmic enzyme whose primary role is the regulation of intracellular levels of the sugar alcohol mannitol in plants. Recent immunological and biochemical evidence, however, suggests that MTD is also secreted into the apoplast in response to pathogen attack, despite lacking a known peptide signal sequence for Golgi‐mediated secretion. Because many plant pathogenic fungi secrete mannitol to overcome pathogen‐induced generation of reactive oxygen species (ROS) by the plant, extracellular localization of MTD is hypothesized to have a defensive role of catabolizing pathogen‐secreted mannitol. In the current study, LC/MSE was used to analyze proteins in the secretome of Apium graveolens (celery) following treatment with salicylic acid (SA), an endogenous elicitor of defense responses in plants. Levels of MTD in the secretome of SA‐treated celery cell cultures were found to be induced at least 18‐fold over secretome samples from cell cultures not exposed to SA. This value is in close agreement with published immunological and biochemical observations. Overall, this report provides the first mass spectrometry identification and quantification measurements supporting the hypothesis that MTD is secreted in response to simulated pathogen attack via a non‐classical secretion mechanism. As demonstrated with MTD secretion, LC/MSE can be implemented as a discovery‐driven MRM‐based quantitative approach which can be used to reveal potential post‐translational modifications, thus providing a new method in the area of gel‐free and label‐free proteomic analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
As plants lack a circulatory system and adaptive immune system, they have evolved their own defense systems distinct from animals, in which each plant cell is capable of defending itself from pathogens. Plants induce a number of defense responses, which are triggered by a variety of molecules derived from pathogenic microorganisms, referred to as microbe-associated molecular patterns (MAMPs), including peptides, proteins, lipopolysaccharide, beta-glucan, chitin, and ergosterol. The interaction between plants and chemicals in the context of plant defense represents a "natural" and simple model for chemogenomics, at the intersection between chemical and biological diversities. For protection of crop plants from diseases, it has been shown to be effective to stimulate the plant immunity by chemical compounds, the so-called "plant defense activators". Combinatorial chemistry techniques can be applied to the search for novel plant defense activators, but it is essential to establish an efficient and reliable screening system suitable for library screening. For studies of the plant immune system, it is difficult to use isolated proteins as biological targets because the receptors for MAMP recognition are largely unknown and even the receptors identified so far are transmembrane proteins. Therefore, screening for novel peptides acting on MAMP receptors from combinatorial libraries must rely on a solution-phase assay using cells as the biological targets. In this review, we introduce the cell-based lawn format assay for identification of peptides acting as plant defense activators from combinatorial peptide libraries. The requirements and limitations in constructing the screening system using combinatorial libraries in the studies of plant sciences are also discussed.  相似文献   

12.
壳聚糖酶的研究进展   总被引:22,自引:0,他引:22  
壳聚糖酶是最近发现的一种专一性降解壳聚糖的新酶。本文概述了壳聚糖酶的分布,理化性质和固定化情况,综述了它的催化降解特异性和分子学研究进展,对它在植物抗性方面的应用作了简要介绍。  相似文献   

13.
New agricultural strategies aim to reduce the use of pesticides due to their damage to the environment and humans, and the caused resistance to pathogens. Therefore, alternative sources of antifungal compounds from plants are under investigation lately. Extracts from plants have a wide composition of chemical compounds which may complicate the development of pathogen resistance. Botrytis cinerea, causing grey mould, is an important horticultural and ornamental pathogen, responsible for the relevant yield and quality losses. B. cinerea isolated from a different plant host may differ in the sensitivity to antifungal substances from plants. Assessing the importance of research covering a wide range of pathogens for the rapid development of biopesticides, this study aims to determine the sensitivity of the B. cinerea isolate complex (10 strains) to plant extracts, describe morphological changes caused by the extract treatment, and detect differences between the sensitivity of different plant host isolates. The results showed the highest sensitivity of the B. cinerea isolates complex to cinnamon extract, and the lowest to laurel extract. In contrast, laurel extract caused the most changes of morphological attributes in the isolates. Five B. cinerea isolates from plant hosts of raspberry, cabbage, apple, bell pepper, and rose were grouped statistically according to their sensitivity to laurel extract. Meanwhile, the bell pepper isolate separated from the isolate complex based on its sensitivity to clove extract, and the strawberry and apple isolates based on their sensitivity to cinnamon extract.  相似文献   

14.
Cell-based biosensors, bioelectronic portable devices containing plant living cells have been used for monitoring some physiological changes induced by pathogen-derived signal molecules called flagellin. The screen-printed electrodes have been adapted for preparation of biosensors. The proton-sensitive thick films have been printed using composite bulk modified with edition of RuO(2). Obtained disposable electrodes were made possible to measure the pH change with well sensitivity and reproducibility. Tobacco cells attached to the electrode surface, cell-based biosensor, can be used for the detection of flagellin, the virulence factor of bacterial pathogen. We culture tobacco cells on the surface of such electrotransducer for several weeks and monitor of potential of cells under flagellin stimulation. The detection of the electrochemical proton gradient across the plasma membrane serves as the analytical signal. The electrode response depended upon H(+) concentration in extracellular solution. It can be conveniently observed on the surfaces of biosensors. Suitable stability and the good response time of constructed biosensors were observed. Future development of these cell-based biosensors could draw advances in selective monitoring of microbial pathogens and other physiologically active components. Moreover, this new method is much faster compared with the traditional microbial testing.  相似文献   

15.
Emerging antibiotic resistance in bacterial pathogens has necessitated the development of alternative ‘outside of the box’ antimicrobial therapeutics. Polypept(o)ide-based bactericides with chemical structures mimicking antimicrobial host defense peptides have emerged as promising candidates for treating antibiotic-resistant and recurring infections. This review summarizes the recent advances in membrane-active polypept(o)ide-based bactericides in the treatment of antibiotic-resistant bacterial infections associated with the physical disruption of bacterial cell walls/cell membranes. Among these polypept(o)ide-based bactericides, nonantibiotic treatment strategies are employed to combat lethal bacterial strains resulting from acquired antibiotic resistance and biofilm formation, featuring the capacity to evade acquired antibiotic resistance-related mechanisms and to alleviate the emergence of drug resistance. Emphasis will focus on the typical polypept(o)ides with diverse molecular conformations (e.g., linear, brush-like, and star-shaped) and various chemical structures of monomers (e.g., α-amino acid, β-amino acid, and N-substituted glycine) that are central to the performance of antimicrobial polypept(o)ides. Finally, a brief discussion of the key challenges and prospects of polypept(o)ide-based bactericides is presented.  相似文献   

16.
Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.  相似文献   

17.
Functional analysis of polyphenol oxidases by antisense/sense technology   总被引:1,自引:0,他引:1  
Polyphenol oxidases (PPOs) catalyze the oxidation of phenolics to quinones, the secondary reactions of which lead to oxidative browning and postharvest losses of many fruits and vegetables. PPOs are ubiquitous in angiosperms, are inducible by both biotic and abiotic stresses, and have been implicated in several physiological processes including plant defense against pathogens and insects, the Mehler reaction, photoreduction of molecular oxygen by PSI, regulation of plastidic oxygen levels, aurone biosynthesis and the phenylpropanoid pathway. Here we review experiments in which the roles of PPO in disease and insect resistance as well as in the Mehler reaction were investigated using transgenic tomato (Lycopersicon esculentum) plants with modified PPO expression levels (suppressed PPO and overexpressing PPO). These transgenic plants showed normal growth, development and reproduction under laboratory, growth chamber and greenhouse conditions. Antisense PPO expression dramatically increased susceptibility while PPO overexpression increased resistance of tomato plants to Pseudomonas syringae. Similarly, PPO-overexpressing transgenic plants showed an increase in resistance to various insects, including common cutworm (Spodoptera litura (F.)), cotton bollworm (Helicoverpa armigera (Hübner)) and beet army worm (Spodoptera exigua (Hübner)), whereas larvae feeding on plants with suppressed PPO activity had higher larval growth rates and consumed more foliage. Similar increases in weight gain, foliage consumption, and survival were also observed with Colorado potato beetles (Leptinotarsa decemlineata (Say)) feeding on antisense PPO transgenic tomatoes. The putative defensive mechanisms conferred by PPO and its interaction with other defense proteins are discussed. In addition, transgenic plants with suppressed PPO exhibited more favorable water relations and decreased photoinhibition compared to nontransformed controls and transgenic plants overexpressing PPO, suggesting that PPO may have a role in the development of plant water stress and potential for photoinhibition and photooxidative damage that may be unrelated to any effects on the Mehler reaction. These results substantiate the defensive role of PPO and suggest that manipulation of PPO activity in specific tissues has the potential to provide broad-spectrum resistance simultaneously to both disease and insect pests, however, effects of PPO on postharvest quality as well as water stress physiology should also be considered. In addition to the functional analysis of tomato PPO, the application of antisense/sense technology to decipher the functions of PPO in other plant species as well as for commercial uses are discussed.  相似文献   

18.
The grapevine (Vitis vinifera) is one of the most widely cultivated fruit crops globally, and one of its most important diseases in terms of economic losses is downy mildew, caused by Plasmopara viticola. Several wild Vitis species have been found to be resistant to this pathogen and have been used in breeding programs to introduce resistance traits to susceptible cultivars. Plant defense is based on different mechanisms, and volatile organic compounds (VOCs) play a major role in the response to insects and pathogens. Although grapevine resistance mechanisms and the production of secondary metabolites have been widely characterized in resistant genotypes, the emission of VOCs has not yet been investigated following P. viticola inoculation. A Proton Transfer Reaction‐Time of Flight‐Mass Spectrometer (PTR‐ToF‐MS) was used to analyze the VOCs emitted by in vitro‐grown plants of grapevine genotypes with different levels of resistance. Downy mildew inoculation significantly increased the emission of monoterpenes and sesquiterpenes by the resistant SO4 and Kober 5BB genotypes, but not by the susceptible V. vinifera Pinot noir. Volatile terpenes were implicated in plant defense responses against pathogens, suggesting that they could play a major role in the resistance against downy mildew by direct toxicity or by inducing grapevine resistance. The grapevine genotypes differed in terms of the VOC emission pattern of both inoculated and uninoculated plants, indicating that PTR‐ToF‐MS could be used to screen hybrids with different levels of downy mildew resistance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Induction of systemic resistance in host plants through microbes and their bioactive metabolites are attaining popularity in modern agricultural practices. In this regard, individual application of two strains of Pseudomonas, RRLJ 134 and RRLJ 04, exhibited development of induced systemic resistance in tea plants against brown root rot and charcoal stump rot under split root experiments. The experimental findings also confirmed that the cuttings treated with fungal test pathogen and plant growth-promoting rhizobacteria (PGPR) strains survived longer as compared with pathogen–alone-treated cuttings. The enzyme level studies revealed that the presence of PGPR strains reduced the viscosity loss of cellulose and pectin by both the pathogens to a significant level. The activity of defense-related enzymes like l-phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase were also recorded higher in tea cuttings treated with PGPR strains in presence of pathogen. Crude bioactive metabolites isolated from these strains also showed in vitro antagonism against the test pathogens besides reducing the number of diseased plants under gnotobiotic conditions. These findings confirm the utilization of these two strains for induction of systemic resistance against two major root diseases in tea plants under plantation conditions.  相似文献   

20.
Fungal plant diseases can cause very substantial yield losses in crucifer crops such as rapeseed and canola, or vegetables such as cabbage and broccoli. To devise sustainable methods to prevent and deter crucifer pathogens, the chemical interaction between crucifers and their fungi is under intense investigation. Crucifers produce complex blends of secondary metabolites with diverse ecological roles that include protection against microbial pathogens and other pests. The secondary metabolites involved in crucifer defense, namely phytoalexins and phytoanticipins, and their metabolism by fungal pathogens indicate that some fungi produce different enzymes to detoxify these metabolites and that some fungal detoxifying enzymes are rather specific. Chemical synthesis and screening of phytoalexin analogue libraries using cultures of fungal pathogens, as well as protein extracts, have shown that such detoxification reactions can be inhibited and that some inhibitors are strongly antifungal. Overall results of current work show the feasibility of using selective inhibitors of fungal detoxifying enzymes, i.e., paldoxins, to protect plants by boosting their chemical defenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号