首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a class of nonlinear Boltzmann equations describing return to thermal equilibrium in a gas of colliding particles suspended in a thermal medium. We study solutions in the space where is the one-particle phase space and is the Liouville measure on Γ(1). Special solutions of these equations, called “Maxwellians,” are spatially homogenous static Maxwell velocity distributions at the temperature of the medium. We prove that, for dilute gases, the solutions corresponding to smooth initial conditions in a weighted L 1-space converge to a Maxwellian in , exponentially fast in time.  相似文献   

2.
We apply the Nyquist method to the Hamiltonian mean field (HMF) model in order to settle the linear dynamical stability of a spatially homogeneous distribution function with respect to the Vlasov equation. We consider the case of Maxwell (isothermal) and Tsallis (polytropic) distributions and show that the system is stable above a critical kinetic temperature Tc and unstable below it. Then, we consider a symmetric double-humped distribution, made of the superposition of two decentered Maxwellians, and show the existence of a re-entrant phase in the stability diagram. When we consider an asymmetric double-humped distribution, the re-entrant phase disappears above a critical value of the asymmetry factor Δ > 1.09. We also consider the HMF model with a repulsive interaction. In that case, single-humped distributions are always stable. For asymmetric double-humped distributions, there is a re-entrant phase for 1 ≤ Δ < 25.6, a double re-entrant phase for 25.6 < Δ < 43.9 and no re-entrant phase for Δ > 43.9. Finally, we extend our results to arbitrary potentials of interaction and mention the connexion between the HMF model, Coulombian plasmas and gravitational systems. We discuss the relation between linear dynamical stability and formal nonlinear dynamical stability and show their equivalence for spatially homogeneous distributions. We also provide a criterion of dynamical stability for spatially inhomogeneous systems.  相似文献   

3.
We investigate the solutions for a set of coupled nonlinear Fokker–Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.  相似文献   

4.
We study global existence and long time behaviour for the inhomogeneous nonlinear BGK model for the Boltzmann equation with an external confining potential. For an initial datum f 0≥0 with bounded mass, entropy and total energy we prove existence and strong convergence in L 1 to a Maxwellian equilibrium state, by compactness arguments and multipliers techniques. Of particular interest is the case with an isotropic harmonic potential, in which Boltzmann himself found infinitely many time-periodic Maxwellian steady states. This behaviour is shared with the Boltzmann equation and other kinetic models. For all these systems we study the multistability of the time-periodic Maxwellians and provide necessary conditions on f 0 to identify the equilibrium state, both in L 1 and in Lyapunov sense. Under further assumptions on f, these conditions become also sufficient for the identification of the equilibrium in L 1.  相似文献   

5.
Long-range interacting N-particle systems get trapped into long-living out-of-equilibrium stationary states called quasi-stationary states (QSS). We study here the response to a small external perturbation when such systems are settled into a QSS. In the N → ∞ limit the system is described by the Vlasov equation and QSS are mapped into stable stationary solutions of such equation. We consider this problem in the context of a model that has recently attracted considerable attention, the Hamiltonian mean field (HMF) model. For such a model, stationary inhomogeneous and homogeneous states determine an integrable dynamics in the mean-field effective potential and an action-angle transformation allows one to derive an exact linear response formula. However, such a result would be of limited interest if restricted to the integrable case. In this paper, we show how to derive a general linear response formula which does not use integrability as a requirement. The presence of conservation laws (mass, energy, momentum, etc.) and of further Casimir invariants can be imposed a posteriori. We perform an analysis of the infinite time asymptotics of the response formula for a specific observable, the magnetization in the HMF model, as a result of the application of an external magnetic field, for two stationary stable distributions: the Boltzmann-Gibbs equilibrium distribution and the Fermi-Dirac one. When compared with numerical simulations the predictions of the theory are very good away from the transition energy from inhomogeneous to homogeneous states.  相似文献   

6.
This paper is concerned with the finite element analysis of boundary value problems involving nonlinear magnetic shape memory behavior, as might be encountered in experimental testing or engineering applications of magnetic shape memory alloys (MSMAs). These investigations mainly focus on two aspects: first, nonlinear magnetostatic analysis, in which the nonlinear magnetic properties of the MSMA are predicted by the phenomenological internal variable model previously developed by Kiefer and Lagoudas, is utilized to investigate the influence of the demagnetization effect on the interpretation of experimental measurements. An iterative procedure is proposed to deduce the true constitutive behavior of MSMAs from experimental data that typically reflect the shape-dependent system response of a sample. Secondly, the common assumption of a homogeneous Cauchy stress distribution in the MSMA sample is tested. This is motivated by the expectation that the influence of magnetic body forces and body couples caused by field matter interactions may not be negligible in MSMAs that exhibit blocking stresses of well below 10?MPa. To this end, inhomogeneous Maxwell stress distributions are first computed in a post-processing step, based on the magnetic field and magnetization distributions obtained in the magnetostatic analysis. Since the computed Maxwell stress fields, though allowing a first estimation of the influence of the magnetic force and couple, do not satisfy equilibrium conditions, a finite element analysis of the coupled field equations is performed in a second step to complete the study. It is found that highly non-uniform Cauchy stress distributions result under the influence of magnetic body forces and couples, with magnitudes of the stress components comparable to externally applied bias stress levels.  相似文献   

7.
We study the homogeneous, isotropic, nonlinear Boltzmann equation for a Maxwellian interaction. We show that solutions decreasing like inverse powers of the energy are physically acceptable both in the linearized and the quadratic problem. Because all moments may not exist, we introduce a generalized generating function and a finite differential system for generalized Sonine moments is derived. These new solutions may lead to small relaxation rates and justify in most cases the linear approximation.  相似文献   

8.
In this paper we study the modulation of localized solutions by an inhomogeneous saturable nonlinear medium. Throughout an appropriate ansatz we convert the inhomogeneous saturable nonlinear Schrödinger equation in a homogeneous one. Then, via a variational approach we construct localized solutions of the autonomous equation and we present some modulation patterns of this localized structures. We have checked the stability of such solutions through numerically simulations.  相似文献   

9.
We consider some questions related to the self-similar asymptotics in the kinetic theory of both elastic and inelastic particles. In the second case we have in mind granular materials, when the model of hard spheres with inelastic collisions is replaced by a Maxwell model, characterized by a collision frequency independent of the relative speed of the colliding particles. We first discuss how to define the n-dimensional (n = 1,2,...) inelastic Maxwell model and its connection with the more basic Boltzmann equation for inelastic hard spheres. Then we consider both elastic and inelastic Maxwell models from a unified viewpoint. We prove the existence of (positive in the inelastic case) self-similar solutions with finite energy and investigate their role in large time asymptotics. It is proved that a recent conjecture by Ernst and Brito devoted to high energy tails for inelastic Maxwell particles is true for a certain class of initial data which includes Maxwellians. We also prove that the self-similar asymptotics for high energies is typical for some classes of solutions of the classical (elastic) Boltzmann equation for Maxwell molecules. New classes of (not necessarily positive) finite-energy eternal solutions of this equation are also studied.  相似文献   

10.
The paper considers backward solutions of the spatially homogeneous Boltzmann equation for Maxwellian molecules with angular cutoff. We prove that if the initial datum of a backward solution has finite moments up to order >2, then the backward solution must be an equilibrium, i.e. a Maxwellian distribution. This gives a partial positive answer to the Villani’s conjecture on a global irreversibility of Maxwellian molecules.  相似文献   

11.
《Physics letters. A》2020,384(23):126573
We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal boundary conditions. The construction applies for a broad class of linear partial differential equations and linear boundary conditions.  相似文献   

12.
We study the stationary solution of the Boltzmann equation in a slab with a constant external force parallel to the boundary and complete accommodation condition on the walls at a specified temperature. We prove that when the force is sufficiently small there exists a solution which converges, in the hydrodynamic limit, to a local Maxwellian with parameters given by the stationary solution of the corresponding compressible Navier-Stokes equations with no-slip boundary conditions. Corrections to this Maxwellian are obtained in powers of the Knudsen number with a controlled remainder.  相似文献   

13.
In this paper, we consider the linearized Vlasov–Poisson equation around an homogeneous Maxwellian equilibrium in a weakly collisional regime: there is a parameter \({\varepsilon }\) in front of the collision operator which will tend to 0. Moreover, we study two cases of collision operators, linear Boltzmann and Fokker–Planck. We prove a result of Landau damping for those equations in Sobolev spaces uniformly with respect to the collision parameter \({\varepsilon }\) as it goes to 0.  相似文献   

14.
We show that the rate of convergence towards the self-similar solution of certain linearized versions of the fast diffusion equation can be related to the number of moments of the initial datum that are equal to the moments of the self-similar solution at a fixed time. As a consequence, we find an improved rate of convergence to self-similarity in terms of a Fourier based distance between two solutions. The results are based on the asymptotic equivalence of a collisional kinetic model of Boltzmann type with a linear Fokker-Planck equation with nonconstant coefficients, and make use of methods first applied to the reckoning of the rate of convergence towards equilibrium for the spatially homogeneous Boltzmann equation for Maxwell molecules.  相似文献   

15.
We study the local-in-time hydrodynamic limit of the relativistic Boltzmann equation using a Hilbert expansion. More specifically, we prove the existence of local solutions to the relativistic Boltzmann equation that are nearby the local relativistic Maxwellians. The Maxwellians are constructed from a class of solutions to the relativistic Euler equations that includes a large subclass of near-constant, non-vacuum fluid states. In particular, for small Knudsen number, these solutions to the relativistic Boltzmann equation have dynamics that are effectively captured by corresponding solutions to the relativistic Euler equations.  相似文献   

16.
An inhomogeneous cosmological solution with partial similarity is derived by extending the self-similar solutions in spherically symmetric spacetime containing pressureless matter. To show their physical difference from the previous self-similar one, we consider inhomogeneous cosmological models with inner and outer homogeneous regions and an intermediate inhomogeneous region, and derive the relations between observational quantities in them. It is found as a result that the models have different z-dependence of the local density parameter.  相似文献   

17.
Contact forces in a granular packing   总被引:1,自引:0,他引:1  
We present the results of a systematic numerical investigation of force distributions in granular packings. We find that all the main features of force transmission previously established for two-dimensional systems of hard particles hold in three-dimensional systems and for soft particles, too. In particular, the probability distribution of normal forces falls off exponentially for forces above the mean force. For forces below the mean, this distribution is either a decreasing power law when the system is far from static equilibrium, or nearly uniform at static equilibrium, in agreement with recent experiments. Moreover, we show that the forces below the mean do not contribute to the shear stress. The subnetwork of the contacts carrying a force below the mean thus plays a role similar to a fluid surrounding the solid backbone composed of the contacts carrying a force above the mean. We address the issue of the computation of contact forces in a packing at static equilibrium. We introduce a model with no local simplifying force rules, that allows for an exact computation of contact forces for given granular texture and boundary conditions. (c) 1999 American Institute of Physics.  相似文献   

18.
Einstein's principle of general relativity is a dynamical-group approach in that all dynamics is implied by the invariance and no force is introduced (as an external, symmetry-breaking factor). In this spirit we take a Poincaré-invariant free wave equation and, deforming the Poincaré group to the de Sitter group, obtain interaction. This illustrates our algebraic approach to gauge invariance, whereby the (generalized) Maxwell tensor of the Yang-Mills field appears as structure constants of the homogeneous algebra obtained as a deformation of an inhomogeneous one, with interaction appearing via the same tensor, which plays a role corresponding to the curvature tensor in Einstein's general relativity.  相似文献   

19.
A. Rossani 《Physica A》2009,388(12):2354-2366
The linear Boltzmann equation for elastic and/or inelastic scattering is applied to derive the distribution function of a spatially homogeneous system of charged particles spreading in a host medium of two-level atoms and subjected to external electric and/or magnetic fields. We construct a Fokker-Planck approximation to the kinetic equations and derive the most general class of distributions for the given problem by discussing in detail some physically meaningful cases. The equivalence with the transport theory of electrons in a phonon background is also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号