首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose is to reestablish the balance laws of momentum, angular momentum and energy and to derive the corresponding local and nonlocal balance equations for micromorphic continuum mechanics and couple stress theory. The desired results for micromorphic continuum mechanics and couple stress theory are naturally obtained via direct transitions and reductions from the coupled conservation law of energy for micropolar continuum theory, respectively. The basic balance laws and equations for micromorphic continuum mechanics and couple stress theory are constituted by combining these results derived here and the traditional conservation laws and equations of mass and microinertia and the entropy inequality. The incomplete degrees of the former related continuum theories are clarified. Finally, some special cases are conveniently derived. Foundation items: the National Natural Science Foundation of China (10072024); the Research Foundation of Liaoning Education Committee (990111001) Biography: DAI Tian-min (1931≈)  相似文献   

2.
3.
Large-scale atomistic simulations of a mode I crack propagating in a harmonic lattice are presented. The objective of this work is to study the stress and strain fields near a rapidly propagating mode I crack. The asymptotic continuum mechanics solutions of the elastic fields are compared quantitatively with molecular-dynamics simulation results for different crack velocities. It is observed that both atomistic stress and atomistic strain can be successfully related to the corresponding continuum quantities. The study reveals that the atomistic simulation results agree well with the continuum theory predictions, which suggests that the continuum theory can be applied for nano-scale dynamic problems.  相似文献   

4.
A nanoscale continuum theory is established to directly incorporate interatomic potentials into a continuum analysis without any parameter fitting. The theory links interatomic potentials and atomic structure of a material to a constitutive model on the continuum level. The theory is applied to study the linear elastic modulus of a single-wall carbon nanotube. The Young's modulus predicted by this nanoscale continuum theory agrees well with prior experimental results and atomistic studies.  相似文献   

5.
IntroductionThispaperisadirectcontinuationofRef.[1 ] .InitthecoupledconservationlawofenergypresentedinRef.[2 ]wasextendedandtherathercompletesystemsofbasicbalancelawsandequationsformicropolarcontinuumtheoryhavebeenconstitutedbycombiningtherenewedresultsandthetraditionalconservationlawsofmassandmicroinertiaandtheentropyinequality .Thepurposeofthispaperistorestablishthesystemsofbasicbalancelawsandequationsformicromorphiccontinuumtheoryandcouplestresstheoryviadirecttransitionsandreductionsfromth…  相似文献   

6.
7.
分析了三维Cosserat连续体理论中的应力应变特征,推导了三维Cosserat连续体的有限元方程,基于ABAQUS计算软件提供的用户单元子程序(UEL)接口编写了弹性Cosserat连续体三维20节点有限元程序,并分析了微悬臂梁自由端的挠度问题和微杆扭转问题。通过与基于经典连续体理论的解析解及有限元数值计算结果进行比较,表明所发展的三维Cosserat连续体有限元能有效地模拟微结构尺寸相关效应问题,即随着微结构尺寸与材料内部长度参数的接近,基于Cosserat连续体有限元分析得到的微梁的挠度以及微杆的转角与经典连续体的解析解及有限元解相比越来越小;反之,Cosserat连续体有限元的计算结果与经典连续体的解析解及有限元数值解较为一致。  相似文献   

8.
In the presence of plastic slip gradients, compatibility requires gradients in elastic rotation and stretch tensors. In a crystal lattice the gradient in elastic rotation can be related to bond angle changes at cores of so-called geometrically necessary dislocations. The corresponding continuum strain energy density can be obtained from an interatomic potential that includes two- and three-body terms. The three-body terms induce restoring moments that lead to a couple stress tensor in the continuum limit. The resulting stress and couple stress jointly satisfy a balance law. Boundary conditions are obtained upon stress, couple stress, strain and strain gradient tensors. This higher-order continuum theory was formulated by Toupin (Arch. Ration. Mech. Anal. 11 (1962) 385). Toupin's theory has been extended in this work to incorporate constitutive relations for the stress and couple stress under multiplicative elastoplasticity. The higher-order continuum theory is exploited to solve a boundary value problem of relevance to single crystal and polycrystalline nano-devices. It is demonstrated that certain slip-dominated deformation mechanisms increase the compliance of nanostructures in bending-dominated situations. The significance of these ideas in the context of continuum plasticity models is also dwelt upon.  相似文献   

9.
Ultrasonic waves are powerful and popular methods for measuring mechanical properties of solids even at nanoscales. The extraction of material constants from the measured wave data requires the use of a model that can accurately describe the wave motion in the solid. The objective of this paper is to develop a continuum theory with microstructures that can capture the effect of the microstructure or nanostructure in ultra-thin films when waves of short wavelengths are used. This continuum theory is developed from assumed displacement fields for microstructures. Local kinematic variables are introduced to express these local displacements and are subjected to internal continuity conditions. The accuracy of the present theory is verified by comparing the results with those of the lattice model for the thin film. Specifically, dispersion curves for surface wave propagation and wave propagation in a thin film supported by an elastic homogeneous substrate are studied. The inadequacy of the conventional continuum theory is discussed.  相似文献   

10.
Continuum Mechanics Modeling and Simulation of Carbon Nanotubes   总被引:1,自引:0,他引:1  
The understanding of the mechanics of atomistic systems greatly benefits from continuum mechanics. One appealing approach aims at deductively constructing continuum theories starting from models of the interatomic interactions. This viewpoint has become extremely popular with the quasicontinuum method. The application of these ideas to carbon nanotubes presents a peculiarity with respect to usual crystalline materials: their structure relies on a two-dimensional curved lattice. This renders the cornerstone of crystal elasticity, the Cauchy–Born rule, insufficient to describe the effect of curvature. We discuss the application of a theory which corrects this deficiency to the mechanics of carbon nanotubes (CNTs). We review recent developments of this theory, which include the study of the convergence characteristics of the proposed continuum models to the parent atomistic models, as well as large scale simulations based on this theory. The latter have unveiled the complex nonlinear elastic response of thick multiwalled carbon nanotubes (MWCNTs), with an anomalous elastic regime following an almost absent harmonic range.  相似文献   

11.
Ultrasonic wave propagation is one of powerful and popular methods for measuring mechanical properties of solids even at nano scales. The extraction of material constants from the measured wave data may not be accurate and reliable when waves of short wavelengths are used. The objective of this paper is to study the high-frequency antiplane wave propagation in ultra-thin films at nanoscale. A developed continuum microstructure theory will be used to capture the effect of nanostructures in ultra-thin films. This continuum theory is developed from assumed displacement fields for nanostructures. Local kinematic variables are introduced to express these local displacements and are subjected to internal continuity conditions. The accuracy of the theory is verified by comparing the results with those of the lattice model for the antiplane problem in an infinite elastic medium. Specifically, dispersion curves and corresponding displacement fields for antiplane wave propagation in the ultra-thin films are studied. The inadequacy of the conventional continuum theory is discussed.  相似文献   

12.
13.
缺陷连续统理论即缺陷场论是当代固体力学的一个重要分支,其主要任务是对物质的弹性和非弹性性质的宏、微观研究之间架起一座桥梁。它也被认为是由固体力学、近代物理和数学之间交互作用而发展起来的一门交缘学科。本文分三部分较系统地介绍了它的主要发展和最近结果。第Ⅰ部分讨论具有位错和旋错连续统的运动学和变形几何学,包括Nye,Kondo,Bilby和Krner等人的早期结果以及我们利用4维物质流形上Cartan结构方程推导出的非线性动力学方程的最近结果。第Ⅱ部分详细介绍了缺陷连续统的规范场理论,主要强调对该连续统动力学方程的发展。第Ⅲ部分研究缺陷场论对构造弹塑性物质本构关系的应用。   相似文献   

14.
As is well known, classical continuum theories cease to adequately model a material’s behavior as long-range loads or interactions begin to have a greater effect on the overall behavior of the material, i.e., as the material no longer conforms to the locality requirements of classical continuum theories. It is suggested that certain structures to be analyzed in this work, e.g., columnar thin films, are influenced by non-local phenomena. Directed continuum theories, which are often used to capture non-local behavior in the context of a continuum theory, will therefore be used. The analysis in this work begins by establishing the kinematics relationships for a discrete model based on the physical structure of a columnar thin film. The strain energy density of the system is calculated and used to formulate a directed continuum theory, in particular a micromorphic theory, involving deformations of the film substrate and deformations of the columnar structure. The resulting boundary value problem is solved analytically to obtain the deformation of the film in response to applied end displacements.  相似文献   

15.
On the continuum modeling of carbon nanotubes   总被引:6,自引:0,他引:6  
We have recently proposed a nanoscale continuum theory for carbon nanotubes. The theory links continuum analysis with atomistic modeling by incorporating interatomic potentials and atomic structures of carbon nanotubes directly into the constitutive law. Here we address two main issues involved in setting up the nanoscale continuum theory for carbon nanotubes, namely the multi-body interatomic potentials and the lack of centrosymmetry in the nanotube structure. We explain the key ideas behind these issues in establishing a nanoscale continuum theory in terms of interatomic potentials and atomic structures.  相似文献   

16.
The stability problem of cylindrical shells is addressed using higher-order continuum theories in a generalized framework. The length-scale effect which becomes prominent at microscale can be included in the continuum theory using gradient-based nonlocal theories such as the strain gradient elasticity theories. In this work, expressions for critical buckling stress under uniaxial compression are derived using an energy approach. The results are compared with the classical continuum theory, which can be obtained by setting the length-scale parameters to zero. A special case is obtained by setting two length scale parameters to zero. Thus, it is shown that both the couple stress theory and classical continuum theory forms a special case of the strain gradient theory. The effect of various parameters such as the shell-radius, shell-length, and length-scale parameters on the buckling stress are investigated. The dimensions and constants corresponding to that of a carbon nanotube, where the length-scale effect becomes prominent, is considered for this investigation.  相似文献   

17.
Cellular solids are usually treated as homogeneous continuums with effective properties. Nevertheless, these mechanical properties depend strongly on the ratio of the specimen size to the cell size. These size effects may be accounted for according to preliminary static analysis of effective continuums based on couple-stress theory. In this paper an effective dynamic continuum model, based on couple-stress theory, is proposed to analyze the behavior of free vibrations of periodic cellular solids. In this continuum model, the effective mechanical constants of the effective continuum are deduced by an equivalent energy method. The cellular solid structure is then replaced with the equivalent couple-stress continuum with same overall dimension and shape. Moreover, the finite element formulation of the couple-stress continuum for the generalized eigenvalue analysis is developed to implement the free vibration analysis. The eigenfrequencies of the effective continuum are then obtained via the shear beam theory or the finite element method. A conventional finite element analysis by discretizing each cell of the cellular solids is also carried out to serve as an exact solution. Several structural cases are calculated to demonstrate the accuracy and effectiveness of the proposed continuum model. Good agreement on structural eigenfrequencies between the effective continuum solutions and the exact solutions shows that the proposed continuum model can accurately simulate the dynamic behavior of the cellular solids.  相似文献   

18.
In this paper, an asymmetric theory of nonlocal elasticity with nonlocal body couple is developed on the basis of the axiom system in nonlocal continuum field theory. The Galileo invariance is used for determining the explicit form of the constitutive equations. It is shown that both continuum field theory and quasicontinuum theory give the same constitutive equations and field equations for the general theory of nonlocal elasticity. Finally, the relations among nonlocal theory, couple stress theory, and higher gradient theory are investigated.  相似文献   

19.
Motivated by the Debye theory of rotary diffusion in a dipolar fluid, we systematically develop a continuum mechanical theory of rotary diffusion. This theory generalizes classical kinematics to include continuous rotary degrees of freedom and introduces an additional balance law associated with the rotary degrees of freedom. Various constitutive relations are proposed in accordance with standard procedures of nonlinear continuum mechanics. The resulting set of equations provides a properly invariant and thermodynamically consistent theory that allows for constitutive nonlinearities. In particular, the classical Debye theory along with the Nernst-Einstein relations are shown to follow from a special case of linear constitutive relations and an assumption of ideality in which the free energy consists only of a classical entropic contribution. Within our theory, the notion of osmotic pressure arises naturally as a consequence of accounting for forces that act conjugate to the rotary degrees of freedom and serves as the driving force for rotary diffusion. Accepted November 18, 2000?Published online April 23, 2001  相似文献   

20.
In continuum mechanics, the non-centrosymmetric micropolar theory is usually used to capture the chirality inherent in materials. However, when reduced to a two dimensional (2D) isotropic problem, the resulting model becomes non-chiral. Therefore, influence of the chiral effect cannot be properly characterized by existing theories for 2D chiral solids. To circumvent this difficulty, based on reinterpretation of isotropic tensors in the 2D case, we propose a continuum theory to model the chiral effect for 2D isotropic chiral solids. A single material parameter related to chirality is introduced to characterize the coupling between the bulk deformation and the internal rotation, which is a fundamental feature of 2D chiral solids. Coherently, the proposed continuum theory is applied for the homogenization of a triangular chiral lattice, from which the effective material constants of the lattice are analytically determined. The unique behavior in the chiral lattice is demonstrated through the analyses of a static tension problem and a plane wave propagation problem. The results, which cannot be predicted by the non-chiral model, are verified by the exact solution of the discrete model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号