首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanocomposite is proved to be an effective method to improve thermoelectric performance.In the present study,graphene is introduced into p-type skutterudite La_(0.8)Ti_(0.1)Ga_(0.1)Fe_3CoSb_(12)by plasma-enhanced chemical vapor deposition(PECVD)method to form skutterudite/graphene nanocomposites.It is demonstrated that the graphene has no obvious effect on the electrical conductivity of La_(0.8)Ti_(0.1)Ga_(0.1)Fe_3CoSb_(12),but the Seebeck coefficient is slightly improved at high temperature,thereby leading to high power factor.Furthermore,due to the enhancement of phonon scattering by the graphene,the lattice thermal conductivity is reduced significantly.Ultimately,the maximum z T value of La_(0.8)Ti_(0.1)Ga_(0.1)Fe_3CoSb_(12)/graphene is higher than that of graphene-free alloy and reaches to 1.0 at 723 K.Such an approach raised by us enriches prospects for future practical application.  相似文献   

2.
王彦成  邱吴劼  杨宏亮  席丽丽  杨炯  张文清 《物理学报》2018,67(1):16301-016301
对于重要热电材料之一的填充方钴矿材料,其低热导率的成因存在两种观点:1)填充原子的局域振动引起共振散射降低热导率;2)填充原子的引入加强了三声子倒逆过程来降低热导率.本文采用含有限温度效应的第一性原理分子动力学方法模拟了YbFe_4Sb_(12)的动力学过程,并通过温度相关有效势场方法得到了充分包含非线性作用的等效非谐力常数,研究了微扰近似下的声子输运性质.结果显示,在填充原子振动全部参与三声子倒逆散射过程的近似下,相比于纯方钴矿体系,声子寿命大幅地降低,填充原子的振动是热阻的重要来源.但即便如此,理论计算结果与实验的晶格热导率之间仍存在明显偏离.不同填充原子振动之间的较弱关联性质也揭示其明显偏离经典的声子图像,表现为一种强烈的局域特征振动模式,并以此散射其他晶格声子,因而对热阻的贡献也超出了传统三声子的理论框架.通过将填充原子Yb振动模式的寿命进行共振散射形式的修正,可以使晶格热导率与实验结果符合较好.以上结果表明,YbFe_4Sb_(12)的低晶格热导率是由声子间相互作用以及具有局域振动特征的共振散射两方面因素导致.  相似文献   

3.
RyMxCO4-xSb12化合物的晶格热导率   总被引:1,自引:1,他引:0       下载免费PDF全文
系统地研究了离子半径不同的Ba,Ce,Y作为填充原子及Fe,Ni作为置换原子对填充化合物RyMxCO4-xSb12晶格热导率的影响规律.结果表明:在skunemdite结构的sb组成的20面体空洞中,Ba,Ce,Y的填充原子能显著降低其晶格热导率,且晶格热导率降低幅度按Ba,Ce,Y离子半径减小的顺序而增大.Sb组成的20面体空洞部分被Ba,Ce填充时,晶格热导率最小,填充原子的扰动对声子的散射作用最强.在Co位置上Fe和Ni的置换,能显著地降低RyMxCO4-xSb12化合物的晶格热导率,与Fe相比,Ni对晶格热导率的影响更强.  相似文献   

4.
A generalized expression is used on the basis of relaxation time approximation to facilitate calculation of lattice thermal conductivity of dielectric materials as well as skutterudite family consists of compounds of the form AB3. It is assumed that phonon scattering processes are independent and is represented by frequency dependent relaxation times. The contributions of normal three phonon scattering processes are included explicitly as redistribution of phonon momentum between two oscillation branches is considered. Magnitudes of relaxation times are estimated from the experimental data. The result for CoSb3 is in reasonably good agreement with the experimental result in the temperature range 1–1000°K. It is observed that redistribution of phonon momentum between two oscillation branches leads to a significant suppression of thermal conductivity maximum and it is observed that for unfilled skutterudite the main dominant mechanism at the thermal conductivity maximum is three phonon normal scattering process.  相似文献   

5.
Sn-filled CoSb3 skutterudite compounds were synthesized by the induction melting process. Formation of a single δ-phase of the synthesized materials was confirmed by X-ray diffraction analysis. The temperature dependences of the Seebeck coefficient, electrical resistivity and thermal conductivity were examined in the temperature range of 300-700 K. Positive Seebeck and Hall coefficients confirmed p-type conductivity. Electrical resistivity increased with increasing temperature, which shows that the Sn-filled CoSb3 skutterudite is a degenerate semiconductor. The thermal conductivity was reduced by Sn-filling because the filler atoms acted as phonon scattering centers in the skutterudite lattice. The lowest thermal conductivity was achieved in the composition of Sn0.25Co8Sb24.  相似文献   

6.
考虑界面散射的金属纳米线热导率修正   总被引:1,自引:0,他引:1       下载免费PDF全文
李静  冯妍卉  张欣欣  黄丛亮  杨穆 《物理学报》2013,62(18):186501-186501
理论分析了声子和电子输运对Cu, Ag金属纳米线热导率的贡献. 采用镶嵌原子作用势模型描述纳米尺寸下金属原子间的相互作用, 应用平衡分子动力学方法和Green-Kubo函数模拟了金属纳米线的声子热导率; 采用玻尔兹曼输运理论和Wiedemann-Franz定律计算电子热导率; 并通过散射失配模型和Mayadas-Shatzkes模型引入晶界散射的影响. 在此基础上, 考察分析了纳米线尺度和温度的影响. 研究结果表明: Cu, Ag纳米线热导率的变化规律相似; 电子输运对金属纳米线的导热占主导地位, 而声子热导率的贡献也不容忽视; 晶界散射导致热导率减小, 尤其对电子热导率作用显著; 纳米线总热导率随着温度的升高而降低; 随着截面尺寸减小而减小, 但声子热导率所占份额有所增加. 关键词: 纳米线 热导率 表面散射 晶界散射  相似文献   

7.
钨是最具应用前景的面向等离子体候选材料,但核聚变堆内强烈的辐照环境会使钨的近表面区域产生辐照损伤,进而影响其关键的导热性能.本文构建了包含辐照损伤相关缺陷的晶体钨模型,并采用非平衡分子动力学的方法定量研究了这些缺陷对钨导热性能的影响.结果表明,随中子辐射能量的增加,晶体内部留下的Frenkel缺陷数目增多进而导致钨的晶格热导率降低;间隙原子比空位更易于向晶界偏聚,且钨中的间隙钨原子与空位相比,使晶格热导率下降程度更大.纳米级氦气泡导致晶格热导率的显著降低,气孔率为2.1%时晶格热导率降至完美晶体的约25%.这些不同的缺陷造成不同程度的周围晶格扭曲,增加了声子散射几率,是导致晶格热导率下降的根源.  相似文献   

8.
The magnetotransport properties and magnetocaloric effects of the compound Mn_{1.95}Cr_{0.05}Sb_{0.95}Ga_{0.05} have been studied. With decreasing temperature, a spontaneous first-order magnetic phase transition from ferrimagnetic (FI) to antiferromagnetic (AF) state takes place at T_s=200K. A metamagnetic transition from the AF to FI state can be induced by an external field, accompanied by a giant magnetoresistance effect of 57%. The magnetic entropy changes are determined from the temperature and field dependence of the magnetization using the thermodynamic Maxwell relation. Mn_{1.95}Cr_{0.05}Sb_{0.95}Ga_{0.05} exhibits a negative magnetocaloric effect, and the absolute values of ΔS_M^{max}(T,ΔH) are 4.4, 4.1, 3.6, 2.8 and 1.5 J/(kg·K) for magnetic field changes of 0-5T, 0-4T, 0-3T, 0-2T and 0-1T, respectively.  相似文献   

9.
闫羽  许淑伟  金汉民  杜晓波  苏峰 《中国物理》2004,13(11):1965-1968
The magnetization curves along the crystal axes for Gd_2Fe_{17} and Gd_2Fe_{17}H_3 were analysed based on the single-ion model. If the Gd-Fe exchange interaction has been taken as isotropic as usual, the fitted values of magneto-crystalline anisotropy of the Fe sublattices in Gd_2Fe_{17} and Gd_2Fe_{17}H_3 would become unreasonably different from those of the corresponding Y or Lu compounds. It was shown that the large difference is caused by the neglect of the anisotropy of the Gd-Fe exchange interaction.  相似文献   

10.
Crystallographic and magnetic structures of Pr_6Fe_{13}Ge have been investigated by high-resolution powder neutron diffraction in the temperature range of 10-300 K. The magnetic structure consists of ferromagnetic Pr_6Fe_{13} slabs that alternate antiferromagnetically, along c, with the next Pr_6Fe_{13} slab separated by a non-magnetic Ge layer. The magnetic moments lie within the ab-planes. The propagation vector of this structure is k=(001) with respect to the conventional reciprocal lattice of the I-centred structure. However, the temperature-dependence of neutron-scattering intensity of the (110) Bragg peak, very similar to the temperature-dependent magnetization measured by SQUID magnetometer, indicates that a small c-axis ferromagnetic component should be added to the above antiferromagnetic model.  相似文献   

11.
Lattice thermal conductivity can be reduced by introducing point defect, grain boundary, and nanoscale precipitates to scatter phonons of different wave-lengths, etc. Recently, the effect of electron–phonon (EP) interaction on phonon transport has attracted more and more attention, especially in heavily doped semiconductors. Here the effect of EP interaction in n-type P-doped single-crystal Si has been investigated. The lattice thermal conductivity decreases dramatically with increasing P doping. This reduction on lattice thermal conductivity cannot be explained solely considering point defect scattering. Further, the lattice thermal conductivity can be fitted well by introducing EP interaction into the modified Debye–Callaway model, which demonstrates that the EP interaction can play an important role in reducing lattice thermal conductivity of n-type P-doped single-crystal Si.  相似文献   

12.
The structure and magnetic properties of La(Fe_{1-x}Mn_x)_{11.4}Al_{1.6} (0≤x≤0.25)compounds have been studied. The NaZn_{13}-type structure is preserved and the lattice parameter increases linearly with increasing the Mn concentration. The magnetic ground state changes from the antiferromagnetic to the spin-glass or the cluster-glass state by the substitution of Mn for Fe. Furthermore, a field-induced transition from cluster glass to ferromagnet is found for the samples with x=0.05 and 0.10.  相似文献   

13.
Ya-Nan Li 《中国物理 B》2022,31(4):47203-047203
Increasing the phonon scattering center by adding nanoparticles to thermoelectric materials is an effective method of regulating the thermal conductivity. In this study, a series of Ca$_{3}$Co$_{4}$O$_{9}/x$ wt.% CNTs ($x=0$, 3, 5, 7, 10) polycrystalline ceramic thermoelectric materials by adding carbon nanotubes (CNTs) were prepared with sol-gel method and cold-pressing sintering technology. The results of x-ray diffraction and field emission scanning electron microscopy show that the materials have a single-phase structure with high orientation and sheet like microstructure. The effect of adding carbon nanotubes to the thermoelectric properties of Ca$_{3}$Co$_{4}$O$_{9}$ was systematically measured. The test results of thermoelectric properties show that the addition of carbon nanotubes reduces the electrical conductivity and Seebeck coefficient of the material. Nevertheless, the thermal conductivity of the samples with carbon nanotubes addition is lower than that of the samples without carbon nanotubes. At 625 K, the thermal conductivity of Ca$_{3}$Co$_{4}$O$_{9}$/10 wt.% CNTs sample is reduced to 0.408 W$\cdot$m$^{-1}\cdot$K$^{-1}$, which is about 73% lower than that of the original sample. When the three parameters are coupled, the figure of merit of Ca$_{3}$Co$_{4}$O$_{9}$/3 wt.% CNTs sample reaches 0.052, which is 29% higher than that of the original sample. This shows that an appropriate amount of carbon nanotubes addition can reduce the thermal conductivity of Ca$_{3}$Co$_{4}$O$_{9}$ ceramic samples and improve their thermoelectric properties.  相似文献   

14.
The thermal conductivity of a grain-boundary in silicon bicrystals has been measured in the temperature range from 12°K to 150°K using a newly developed method. The analysis of the experimental results shows that the thermal conductivity is governed by two scattering processes: the acoustical mismatch of both crystal halves and the resonant scattering of the phonons by impurity atoms of the grain boundary. A new method is thereby presented for the direct observation of phonon resonant scattering.  相似文献   

15.
The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch — KK-S model and (b) between different phonon branches — KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and diamond with natural isotopes and highly enriched isotopes. It is observed that the consideration of the normal scattering processes involving different phonon branches gives better results for the temperature dependence of the thermal conductivity of germanium, silicon and diamond with natural and highly enriched isotopes. Also, the estimation of the lattice thermal conductivity of germanium and silicon for these models with the consideration of quadratic form of frequency dependences of phonon wave vector leads to the conclusion that the splitting of longitudinal and transverse phonon modes, as suggested by Holland, is not an essential requirement to explain the entire temperature dependence of lattice thermal conductivity whereas KK-H model gives a better estimation of the thermal conductivity without the splitting of the acoustic phonon modes due to the dispersive nature of the phonon dispersion curves.   相似文献   

16.
We present angle-resolved photoemission studies of (La{1-z}Pr{z}){2-2x}Sr{1+2x}Mn{2}O{7} with x=0.4 and z=0.1, 0.2, and 0.4 along with density functional theory calculations and x-ray scattering data. Our results show that the bilayer splitting in the ferromagnetic metallic phase of these materials is small, if not completely absent. The charge carriers are therefore confined to a single MnO{2} layer, which in turn results in a strongly nested Fermi surface. In addition to this, the spectral function also displays clear signatures of an electronic ordering instability well below the Fermi level. The increase of the corresponding interaction strength with z and its magnitude of ~400 meV make the coupling to a bare phonon highly unlikely. Instead we conclude that fluctuating order, involving electronic and lattice degrees of freedom, causes the observed renormalization of the spectral features.  相似文献   

17.
Polycrystalline skutterudite solid solutions, Ba0.3 (IrxCo1-x)4Sb12 (x from 0 to 0.11), have been synthesized by a two-step solid state reaction method and sintered by a spark plasma sintering (SPS) technique. The influence of Ir substitution on electrical and thermal transport properties has been investigated in the temperature range of 300–850 K. Through Ir substitution, the lattice thermal conductivity was depressed due to the phonon scattering by point defects. The thermopower and thermoelectric power factor increased because of the enhancement of carrier acoustic lattice scattering especially at lower temperatures. Both the dimensionless figure of merit (ZT) and the thermoelectric compatibility factor (CF), which play very important roles for applications, were improved over the whole temperature region. PACS 72.15.Eb; 72.15.Jf; 72.20.Pa; 63.20.Mt; 74.25.Fy An erratum to this article can be found at  相似文献   

18.
19.
A tellurite fibre of TeO_{2}-ZnO-La_{2}O_{3}-Li_{2}O glass codoped with 20000 ppm ytterbium and 5000 ppm erbium was fabricated by the suction casting and rod-in-tube technologies. The absorption spectrum of Er^{3+}/Yb^{3+} -codoped bulk glass has been measured. From the Judd-Ofelt intensity parameters, the spontaneous emission probability and radiative lifetime τ_{rad} of Er^{3+}:{}^{4}I_{13/2}→{}^{4}I_{15/2} transition for the bulk glass have been calculated. The emission fluorescence spectra and lifetimes around 1.5μm, and subsequent upconversion fluorescence in the range of 500-700nm were measured in fibres and compared with those in bulk glass. The changes in amplified spontaneous emission with fibre length and pumping power was also measured. It was found that the emission spectrum from erbium in fibres is almost twice as broad as the corresponding spectrum in bulk glass when pumped at 980nm.  相似文献   

20.
徐慧  宋祎璞 《中国物理》2002,11(12):1294-1299
In this paper, we establish a one-dimensional random nanocrystalline chain model, we derive a new formula of ac electron-phonon-field conductance for electron tunnelling transfer in one-dimensional nanometre systems. By calculating the ac conductivity, the relationship between the electric field, temperature and conductivity is analysed, and the effect of crystalline grain size and distortion of interfacial atoms on the ac conductance is discussed. A characteristic of negative differential dependence of resistance and temperature in the low-temperature region for a nanometre system is found. The ac conductivity increases linearly with rising frequency of the electric field, and it tends to increase as the crystalline grain size increases and to decrease as the distorted degree of interfacial atoms increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号