首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The near wake of a wall-mounted finite-length square cylinder with an aspect ratio of 7 is investigated based on the proper orthogonal decomposition (POD) of the PIV data measured in three spanwise planes, i.e., z/d = 6, 3.5 and 1.0, near the cylinder free end, mid-span and fixed end (wall), respectively. The Reynolds number based on free-stream velocity (U ) and cylinder width (d) is 9,300. A two-dimensional (2D) square cylinder wake is also measured and analyzed at the same Reynolds number for the purpose of comparison. The structures of various POD modes show marked differences between the two flows. While the coefficients, a 1 and a 2, of the POD modes 1 and 2 occur within an annular area centered at a 1 = a 2 = 0 in the 2D wake, their counterparts are scattered all over the entire circular plane at z/d = 1.0 and 3.5 of the finite-length cylinder wake. Flow at z/d = 6 is dominated by POD mode 1, which corresponds to symmetrical vortex shedding and accounts for 54.0 % of the total turbulent kinetic energy (TKE). On the other hand, the POD modes 1 and 2, corresponding to anti-symmetrical vortex shedding, are predominant, accounting for about 45.0 % of the total TKE, at z/d = 3.5 and 1. It has been found that the flow structure may be qualitatively and quantitatively characterized by the POD coefficients. For example, at z/d = 6, a larger a 1 corresponds to a smaller length of flow reversal zone and a stronger downwash flow. At z/d = 3.5 and 1, two typical flow modes can be identified from a 1 and a 2. While large a 1 and/or a 2 correspond to anti-symmetrical vortex shedding, as in a 2D cylinder wake, small a 1 and a 2 lead to symmetrical vortex shedding. Any values between the large and small a 1 and/or a 2 correspond to the flow structure between these two typical flow modes. As such, the probability of occurrence of a flow structure may be determined from the distribution of the POD coefficients.  相似文献   

2.
This study aims to investigate experimentally the influence of rounding corners (r) as well as aspect ratio (AR) on the flow structures of a surface-mounted finite cylinder. The cylinders with sharp (r* = r/D = 0) and rounded corners (r*=0.167, 0.25 and 0.5) and aspect ratio or height-to-width/diameter ratio (AR = H/D) between 2 and 7 are utilized. The experiments are based on the five-hole probe and hot-wire measurements as well as the oil flow visualization. Wake measurements are made in an open return wind tunnel at the Reynolds number, Re = 1.6 × 104, where Re is defined based on the side width/diameter (D) of the cylinder cross-section and the freestream velocity. It is found that r* and AR have significant effects on the flow structure from the perspective of wake topology, strength of streamwise vortices, and vortex shedding frequency. For all r* considered, the wake is characterized by a quadrupole type (both the tip and base vortices are present) at AR = 7, while a dipole type occurs for AR = 2 and 4 (the base vortices are absent). The strength (circulation) of the streamwise vortex structures is affected by r*. For all AR examined in the present study, the strengths of tip and base vortex structures decrease with increasing r*. The oil flow visualization demonstrates that the features of the horseshoe vortex are sensitive to r* and AR. With increasing r*, the location of the separation line moves downstream and the distance between horseshoe vortex legs decreases. Velocity measurements reveal that the downwash flow enhances with increasing r*. It is also found that the Strouhal number increases progressively by 60% as r* increases from 0 to 0.5, regardless of AR.  相似文献   

3.
Unsteady momentum and heat transfer from an asymmetrically confined circular cylinder in a plane channel is numerically investigated using FLUENT for the ranges of Reynolds numbers as 10≤Re≤500, of the blockage ratio as 0.1≤β≤0.4, and of the gap ratio as 0.125≤γ≤1 for a constant value of the Prandtl number of 0.744. The transition of the flow from steady to unsteady (characterized by critical Re) is determined as a function of γ and β. The effect of γ on the mean drag and lift coefficients, Strouhal number (St), and Nusselt number (Nu w ) is studied. Critical Re was found to increase with decreasing γ for all values of β. and St were found to increase with decreasing values of γ for fixed β and Re. The effect of decrease in γ on was found to be negligible for all blockage ratios investigated.  相似文献   

4.
5.
Recently there has been a new surge of interest in three-dimensional wake patterns, from both an experimental and analytical standpoint. One of the central discoveries is that the patterns of vortex shedding are dependent on the specific end conditions of a long cylinder span. However, a number of outstanding questions have remained unanswered, in part because techniques had not existed to control such patterns in a continuous fashion and from outside a test facility. In the present work, we have devised a method to control the end conditions of a cylinder span by non-mechanical and continuously-variable means, namely by the use of end suction. The technique allows a continuous variation of end conditions and admits transient or impulsive control. With the method, the classical steady-state patterns, such as parallel or oblique shedding or the chevron patterns are simply induced. These experiments demonstrate that the wake, at a given Reynolds number, is receptive to a continuous (but limited) range of oblique shedding angles (), rather than to discrete angles. There is excellent agreement in these results with the cos formula for collapsing oblique-shedding frequencies onto a single universal frequency curve. The use of suction has avoided the grossly unsteady motions at the ends of the cylinder span brought about by the wakes of mechanical end manipulators, and we show that the laminar shedding regime exists up to Reynolds numbers (Re) of 205. The surprisingly large disparity among reported measurements of criticalRe for wake transition (Re=140–200), over the last forty years, can now be explained in terms of spanwise end contamination.The control technique has also allowed experiments to be performed, which have resulted in the discovery of new phenomena such as phase shocks and phase expansions. A major difference between these phenomena is that phase shocks (involving regions of straight vortices) translate spanwise at constant speed, crossing the complete span in a finite time, whereas a phase expansion (involving curved vortices) requires an infinite time to complete its development across the span. These transient wake patterns are well illustrated using a simple model, based on experimental measurements, that thenormal wavelength for oblique or parallel vortices remains constant. However, a detailed and close comparison between our experimental results and those results from analytical modelling of the wake using Ginzburg-Landau modelling (in collaboration with Peter Monkewitz at Lausanne) is presently underway. These equations yield a Burger's equation for the spanwise wavenumber (or phase gradient), from which both (phase) shocks and expansions are well-known solutions.
Sommario Recentemente è rinato l'interesse per i modelli tridimensionali di scie, sia da un punto di vista sperimentale che da uno analitico. Una delle scoperte centrali è che le modalità di produzione dei vortici sono dipendenti dalle condizioni agli estremi di un lungo cilindro. Nel presente lavoro, è stato formulato un metodo per controllare le condizioni finali agli estremi di un cilindro per mezzo di variabili continue di significato non-meccanico, cioè per mezzo dell'aspirazione agli estremi. La tecnica permette una variazione continua delle condizioni agli estremi ed ammette controllo transitorio od impulsivo. Con questo metodo sono semplicemente indotti i classici modelli a stato fissato, come anche quelli che prevedono produzioni di vortici parallele od oblique o quellichevron. Questi esperimenti dimostrano che la scia, ad un dato numero di Reynolds, ammette una distribuzione continua (ma limitata) di angoli per distribuzioni oblique, piuttosto che una discreta. In questi risultati c'è un eccellente accordo con la formula del coseno per frequenze di produzioni oblique e collassanti su di una curva di frequenzauniversale. L'uso dell'aspirazione ha evitato i moti largamente instabili alle estremità del cilindro, provocati dalle scie delle parti terminali dei manipolatori, e si osserva che il regime laminare diffondente esiste oltre un numero di Reynolds pari a 205. La sorprendentemente larga disparità tra le misure di numeri di Reynolds critici, riportati per transizioni di scia (Re=140÷200) durante gli ultimi quattro anni, può essere ora spiegata in termini di contaminazione della estensione della lunghezza del cilindro.
  相似文献   

6.
The three components of the vorticity vector in the intermediate region of a turbulent cylinder wake were measured simultaneously using a multi-hot-wire probe. This probe has an improved spatial resolution compared with those reported in the literature. The behavior of the instantaneous velocity and vorticity signals is examined. Both coherent and incoherent vorticity fields are investigated using a phase-averaged technique. The iso-contours of the phase-averaged longitudinal and lateral vorticity variances, and , wrap around the spanwise structures of opposite sign and run through the saddle point along the diverging separatrix. The observation conforms to the previous reports of the occurrence of the longitudinal structures based on flow visualizations and numerical simulations. The magnitude of these contours is about the same as that of the maximum coherent spanwise vorticity at the vortex center, indicating that the strength of the longitudinal structures is comparable to that of the spanwise vortices. Furthermore, and exhibit maximum concentration away from the vortex center, probably because of a combined effect of the large-scale spanwise vortices and the intermediate-scale longitudinal structures. Coherent structures contribute about 36% to the spanwise vorticity variance at x/d=10. The contribution decreases rapidly to about 5% at x/d=40. The present results suggest that vorticity largely reside in relatively small-scale structures.  相似文献   

7.
8.
The convection velocity of vortices in the wake of a circular cylinder has been obtained by two different approaches. The first, implemented in a wind tunnel using an array of X-wires, consists in determining the velocity at the location of maximum spanwise vorticity. Four variants of the second method, which estimates the transit time of vortices tagged by heat or dye, were used in wind and water tunnels over a relatively large Reynolds number range. Results from the two methods are in good agreement with each other. Along the most probable vortex trajectory, there is only a small streamwise increase in the convection velocity for laminar conditions and a more substantial variation when the wake is turbulent. The convection velocity is generally greater than the local mean velocity and does not depend significantly on the Reynolds number.Nomenclature d diameter of circular cylinder - f frequency in spectrum analysis - f v average vortex frequency - r v vortex radius - Re Reynolds number U o d/v - t time - Th , Th , Th r thresholds for zp, , and r v respectively - U o free stream velocity - U 1 maximum value of (U oU) - U c convection velocity of the vortex, as obtained either by Eq. (1) or Eq. (2) - U co convection velocity used in Eq. (3) U cd, U cu average convection velocities of downstream and up-stream regions respectively of the vortex - U cv the value of U c at y = 0.5 - u, v the velocity fluctuations in x and y directions respectively - U, V mean velocity components in x and y directions respectively - U,V U = U + u, V = V + v - x, y, z co-ordinate axes, defined in Fig. 1 Greek Symbols circulation - mean velocity half-width - x spacing between two cold wires or grid spacing - 1, 2 temperature signals from upstream and downstream cold wires respectively - v kinematic viscosity - c transit time for a vortex to travel a distance x - phase in the cross-spectrum of 1 and 2 - z instantaneous spanwise vorticity - zc cut-off vorticity used in determining the vortex size - zp peak value of z - a denotes conditional average, defined in Eq. (12) - a prime denoting rms value  相似文献   

9.
A liquid metal flow induced by a rotating magnetic field in a cylindrical container of finite height was investigated experimentally. It was demonstrated that the flow in a rotating magnetic field is similar to geophysical flows: the fluid rotates uniformly with depth and the Ekman layer exists at the container bottom. Near the vertical wall the flow is depicted in the form of a confined jet whose thickness determines the instability onset in a rotating magnetic field. It was shown that the critical Reynolds number can be found by using the jet velocity u 0 for Re cr =u 2 0/ u/ r. The effect of frequency of a magnetic field on the fluid flow was also studied. An approximate theoretical model is presented for describing the fluid flow in a uniform rotating magnetic field.List of Symbols U r , U , U z radial, azimuthal and vertical velocity components, respectively - B r , U , B z radial, azimuthal and vertical magnetic induction components - A vector potential of magnetic field - j induced electric current density - electrical conductivity of fluid - electrical potential - kinematic viscosity - tf electromagnetic volume force - angular velocity of fluid rotation - R container radius - H container height - aspect ratio - E Ekman number - Re cr critical Reynolds number - r, z radial and axial coordinates  相似文献   

10.
The paper proposes an approximate solution describing a collision of an elastic finite-length cylinder with a rigid barrier when the lateral boundary conditions of the first fundamental problem of elasticity are satisfied. A finite-difference approach with respect to time and the integral transform method are used to reduce the original initial-boundary-value problem to a one-dimensional one. It is solved using the matrix Green’s function. The final expressions for displacements are obtained by solving a singular integral equation by the orthogonal-polynomial method. The values of displacements and strains are analyzed for short periods of time __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 9, pp. 74–82, September 2007.  相似文献   

11.
12.
13.
Vortex shedding from a fixed rigid square cylinder in a cross flow was manipulated by perturbing the cylinder surface using piezo-ceramic actuators, which were activated by a feedback hot-wire signal via a proportional–integral–derivative (PID) controller. The manipulated flow was measured at a Reynolds number (Re) of 7,400 using particle image velocimetry (PIV), laser-induced fluorescence (LIF) flow visualisation, two-component laser Doppler anemometry (LDA), hot wires and load cells. It is observed that the vortex circulation, fluctuating streamwise velocity, lift and drag coefficients and mean drag coefficient may decrease by 71%, 40%, 51%, 42% and 20%, respectively, compared with the unperturbed flow, if the perturbation velocity of the cylinder surface is anti-phased with the flow lateral velocity associated with vortex shedding. On the other hand, these quantities may increase by 152%, 90%, 60%, 67% and 37%, respectively, given in-phased cylinder surface perturbation and vortex shedding. Similar effects are obtained at Re=3,200 and 9,500, respectively. The relationship between the perturbation and flow modification is examined, which provides insight into the physics behind the observation.  相似文献   

14.
This paper describes flow around a pair of cylinders in tandem arrangement with a downstream cylinder being fixed or forced to oscillate transversely. A sinusoidal parietal velocity is applied to simulate cylinder oscillation. Time-dependent Navier-Stokes equations are solved using finite element method. It is shown that there exist two distinct flow regimes: ‘vortex suppression regime’ and ‘vortex formation regime’. Averaged vortex lengths between the two cylinders, pressure variations at back and front stagnant points as well as circumferential pressure profiles of the downstream cylinder are found completely different in the two regimes and, thus, can be used to identify the flow regimes. It is shown that frequency selection in the wake of the oscillating cylinder is a result of non-linear interaction among vortex wakes upstream and downstream of the second cylinder and its forced oscillation. Increasing cylinder spacing results in a stronger oscillatory incident flow upstream of the second cylinder and, thus, a smaller synchronization zone.  相似文献   

15.
Control of three-dimensional phase dynamics in a cylinder wake   总被引:2,自引:0,他引:2  
Recently there has been a surge of new interest in three-dimensional wake patterns. In the present work, we have devised a method to control the spanwise end conditions and wake patterns using “end suction”, which is both continuously-variable and admits transient control. Classical steady-state patterns, such as parallel or oblique shedding or the “chevron” patterns are simply induced. The wake, at a given Reynolds number, is receptive to a continuous range of oblique shedding angles (θ), rather than to discrete angles, and there is excellent agreement with the “cos θ” formula for oblique-shedding frequencies. We show that the laminar shedding regime exists up to Reynolds numbers (Re) of 205, and that the immense disparity among reported critical Re for wake transition (Re = 140–190) can be explained in terms of spanwise end contamination. Our transient experiments have resulted in the discovery of new phenomena such as “phase shocks” and “phase expansions”, which can be explained in terms of a simple model assuming constant normal wavelength of the wake pattern. Peter Monkewitz (Lausanne) also predicts such transient phenomena from a Guinzburg-Landau model for the wake.  相似文献   

16.
The transition phenomena in the wake of a square cylinder were investigated. The existence of mode A and mode B instabilities in the wake of a square cylinder was demonstrated. The critical Reynolds numbers for the inception of these instability modes were identified through the determination of discontinuities in the St–Re curves, and were found to have mean values of 160 and 204 for the onset of mode A and B instabilities, respectively. The spectra and time traces of the wake streamwise velocity component were found to display three distinct patterns in laminar, mode A and mode B flow regimes. Streamwise vortices with different wavelength at various Reynolds numbers were observed through different measures. The symmetries and evolution of the secondary vortices were observed using laser-induced-fluorescent dye. It was found that, just like the case of a circular cylinder, the secondary vortices from the top and bottom rows were out-of-phase with each other in the mode A regime, but in-phase with each other in the mode B regime. From the flow visualization, it was qualitatively proven that there is stronger interaction between braid regions in the mode B regime. At the same time, analysis of PIV measurements quantitatively demonstrated the presence of the stronger cross flow in mode B regime when compared to the mode A regime. It suggests that the in-phase symmetry of the mode B instability is the result of strong interaction between the top and bottom vortex rows. It was also observed that although the vorticity of the secondary vortices in the mode A regime was smaller, its circulation was more than twice that of mode B instability. Compared to primary vortices, the circulations of both mode A and mode B vortices were much smaller, which indicates that the secondary vortices most likely originate from the primary vortices. The wavelengths of the streamwise vortices in the mode A and B regimes were measured using the auto-correlation method, and were found to be 5.1 (±0.1)D, 1.3 (±0.1)D, and 1.1 (±0.1)D at Re=183 (mode A), 228 and 377 (both mode B), respectively. From the present investigation, mode A instability was likely to be due to the joint-effects of the deformation of primary vortex cores and the stretching of vortex sheets in the braid region. On the other hand, mode B instability was thought to originate from the “imprinting” process.  相似文献   

17.
The objective of this experimental study is to characterise the small-scale turbulence in the intermediate wake of a circular cylinder using measured mean-squared velocity gradients. Seven of the twelve terms which feature in ε, the mean dissipation rate of the turbulent kinetic energy, were measured throughout the intermediate wake at a Reynolds number of Re d  ≈ 3000 based on the cylinder diameter (d). Earlier measurements of the nine major terms of ε by Browne et al. (J Fluid Mech 179: 307–326 1987) at a downstream distance (x) of x = 420d and Re d  ≈ 1170 are also used. Whilst departures from local isotropy are significant at all locations in the wake, local axisymmetry of the small-scale turbulence with respect to the mean flow direction is first satisfied approximately at x = 40d. The approach towards local axisymmetry is discussed in some detail in the context of the relative values of the mean-squared velocity gradients. The data also indicate that axisymmetry is approximately satisfied by the large scales at x/d ≥ 40, suggesting that the characteristics of the small scales reflect to a major extent those of the large scales. Nevertheless, the far-wake data of Browne et al. (1987) show a discernible departure from axisymmetry for both small and large scales.  相似文献   

18.
The upstream/downstream streamline shift and the associated negative wake generation (streamwise velocity overshoot in the wake) in a viscoelastic flow past a cylinder are studied in this paper, for the Oldroyd-B, UCM, PTT, and FENE-CR fluids, using the Discrete Elastic Viscous Split Stress Vorticity (DEVSS-ω) scheme (Dou HS, Phan-Thien N (1999). The flow of an Oldroyd-B fluid past a cylinder in a channel: adaptive viscosity vorticity (DAVSS-ω) formulation. J Non-Newtonian Fluid Mech 87:47–73). The numerical algorithm is a parallelized unstructured Finite Volume Method (FVM), running under a distributed computing environment through the Parallel Virtual Machine (PVM) library. It is demonstrated that both the normal stress and its gradient are responsible for the negative wake generation and streamline shifting. Fluid extensional rheology plays an important role in the generation of the negative wake. The negative wake can occur in flows where the fluid extensional viscosity does not increase rapidly with strain rate. The formation of the negative wake does not depend on whether the streamlines undergo an upstream or a downstream shift. Shear-thinning viscosity weakens the velocity overshoot and while shear-thinning first normal stress coefficient enhances the velocity overshoot. Wall proximity is not necessary for the velocity overshoot; however, it enhances the strength of the negative wake. For the Oldroyd-B fluid, the ratio of the solvent viscosity to the zero-shear viscosity plays an important role in the streamline shift. In addition, mesh dependent behaviour of normal stresses along the centreline at high De in most cylinder/sphere simulations is due to the convection of normal stress from the cylinder to the wake, which results in the maximum of the normal stress being located off the centreline by a short distance at high De.  相似文献   

19.
The behaviour of vortex structures shed from a heated cylinder is experimentally investigated by means of 2-D particle tracking velocimetry. Within this investigation the ReD number was chosen to be 73. The RiD number, the dimensionless number which presents the relative importance of the induced heat, varies between 0 and 1. The experiments were carried out in a large towing tank where the disturbances caused by boundary layers could be minimised. The results show that for small RiD numbers the induced heat results in a deflection of the vortex street in negative y-direction. Within the vortex street a linking of two subsequently shed vortices occurs where the vortex shed from the lower half of the cylinder rotates around the vortex shed from the upper half. These phenomena are assumed to be caused by a strength difference between the vortices shed from the upper half of the cylinder and the lower half. For RiD=1 the effect of the induced heat and buoyancy becomes even more pronounced resulting in a more upwards directed vortex street.  相似文献   

20.
It was demonstrated by simulation in our previous study that both the normal stress and its gradient are responsible for the negative wake generation (overshoot in the axial velocity) and streamline shifting. Extensional properties of the fluids dominate the generation of the negative wake, while other factors strengthen or weaken the formation of velocity overshoot. In this study, the criteria for the negative wake generation are discussed in detail for various fluid models, including the PTT, the FENE-CR, the FENE-P, and the Giesekus models. With the FENE-CR fluid, it is easier to generate negative wake than with the FENE-P fluid. This confirms that the constant shear viscosity FENE-CR fluid enhances the velocity overshoot, and that the shear-thinning viscosity FENE-P fluid delays the negative wake generation. The Giesekus fluid has a similar behaviour to the PTT fluid with regarding to the critical conditions of negative wake generation when appropriate fluid parameters are selected. The mechanism of wall proximity in enhancing the negative wake generation is also demonstrated with the analysis for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号