首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于最优化思想的磁流变抛光驻留时间算法   总被引:1,自引:1,他引:0  
基于最优化思想研究磁流变抛光驻留时间算法。将驻留时间反卷积运算变换成矩阵运算,以实际加工要求为约束条件,建立关于驻留时间的最优化数学模型,利用最小二乘逼近和最佳一致逼近数学解法器对优化模型进行数值求解。仿真结果显示:该算法收敛幅度大,计算效率较高,所求解满足数控加工要求。在自行研制的磁流变抛光机床上进行抛光实验,对有效口径为50 mm的圆形平面工件,经过4.7min抛光,PV值从0.191λ降至0.087λ,收敛54.5%,RMS值从0.041λ降至0.010λ,收敛75.6%。  相似文献   

2.
光学镜面磁流变确定性修形的实现   总被引:1,自引:0,他引:1  
磁流变确定性修形具有高精度、高效率、高表面质量以及近零亚表面损伤的特点。介绍了磁流变修形技术的基本原理和方法,并对磁流变修形中涉及的关键技术进行了讨论。在自研的磁流变修形设备上采用水基磁流变抛光液对一块直径80mm的K9玻璃平面进行了磁流变修形实验。经过一次迭代修形(4.39min)使其面形精度峰谷(PV)误差由初始的0.144λ改善到0.06λ(λ=632.8nm),均方根(RMS)误差由初始的0.031λ改善到0.01λ,面形收敛率达到2.81,表面粗糙度RMS值达到0.345nm。实验结果表明,采用磁流变进行光学表面修形,面形收敛快,面形精度高,表面质量好,可广泛应用于高精度光学镜面加工。  相似文献   

3.
为了解决大口径光学元件磁流变高精度加工问题,基于矩阵运算模型,提出了SBB(Subspace Barzilai and Borwein)最小非负二乘与自适应Tikhonov正则化相结合的驻留时间快速求解方法。同时,在一次收敛中采用双去除函数优化螺旋线轨迹下光学元件的加工,保证中心区域与全口径面形精度一致。仿真表明该算法与常用Lawson-Hanson最小非负二乘法相比,计算精度一致且求解效率大幅提高。对Φ600mm以彗差为主的光学表面模拟加工,峰谷(PV)值和均方根(RMS)值从初始的2.712λ与0.461λ中心区域全局一致收敛到0.306λ和0.0199λ(λ=632.8nm)。因此,提出的算法能够在有效保证面形收敛精度的同时快速获得稳定可靠的驻留时间分布,为磁流变抛光应用于大口径光学元件提供有力支持。  相似文献   

4.
为了提高光学加工效率,缩短大口径光学元件制造周期,本文提出了一种具有公自转运动模式的新型高效抛光方式,对其结构、工作原理以及去除特性进行了研究。首先,介绍了公自转抛光装置机械结构及工作原理。接着,根据Hertz接触理论和Preston方程进行了去除函数建模,讨论了不同转速比情况下的去除函数形状。然后,根据理论模型进行了去除函数实验、工艺参数实验以及稳定性实验,研究了压入深度、转速等工艺参数对去除结果的影响。最后,进行了200 mm口径SiC工件的仿真加工。实验结果表明:在2 mm压入深度、200 rpm转速情况下,去除区域直径为19.23 mm,体去除率达到0.197 mm~3/min,去除效率高于同等去除区域大小的传统小磨头加工方式;仿真加工结果表明:SiC仿真镜经过3.7 h加工,面形从3.008λPV,0.553λRMS提高到0.065λPV,0.005λRMS,收敛效率为达到98.18%。  相似文献   

5.
为克服传统抛光方法在硅改性的碳化硅表面抛光存在的不足,采用磁流变抛光在精抛光阶段实现面形误差高效去除和快速收敛。基于实际应用中的对磁流变抛光液的需求,提出了磁流变液的性能要求,并配制了适合改性硅表面抛光的磁流变抛光液,检测所配制的抛光液体的流变特性和分散稳定性,证明了液体具有良好的性能。对口径为130 mm(有效口径为120 mm)的硅改性的同轴非球面碳化硅工件进行实际抛光。经过两个周期约3 h的抛光,面形误差均方根(RMS)从0.051λ(λ=632.8 nm)快速收敛至0.012λ,粗糙度Ra达0.618 nm。验证了所配制的磁流变抛光液满足碳化硅基底改性硅表面的抛光需求,证明了磁流变抛光技术在镜面硅改性后精抛光阶段具有独特的优势。  相似文献   

6.
为克服传统抛光方法在硅改性的碳化硅表面抛光存在的不足,采用磁流变抛光在精抛光阶段实现面形误差高效去除和快速收敛。基于实际应用中的对磁流变抛光液的需求,提出了磁流变液的性能要求,并配制了适合改性硅表面抛光的磁流变抛光液,检测所配制的抛光液体的流变特性和分散稳定性,证明了液体具有良好的性能。对口径为130 mm(有效口径为120 mm)的硅改性的同轴非球面碳化硅工件进行实际抛光。经过两个周期约3 h的抛光,面形误差均方根(RMS)从0.051λ(λ=632.8 nm)快速收敛至0.012λ,粗糙度Ra达0.618 nm。验证了所配制的磁流变抛光液满足碳化硅基底改性硅表面的抛光需求,证明了磁流变抛光技术在镜面硅改性后精抛光阶段具有独特的优势。  相似文献   

7.
李智钢  鲍振军  朱衡  蔡红梅  周衡 《强激光与粒子束》2018,30(6):062003-1-062003-6
大口径非球面光学元件的面形中频误差对光路中的光斑扩散函数精度以及高能激光的能量散射有着直接的影响,针对该问题,提出一种计算机控制的多磨头组合抛光技术,用于对非球面元件中频误差的有效控制。对半刚性抛光盘抛光过程进行了力学有限元分析,并基于Bridging模型对半刚性抛光盘抛光过程进行了理论模拟,对其贴合特性进行了研究分析。实验结果表明:采用多磨头组合抛光的技术能够有效改善大尺寸非球面元件的面形中频误差,加工的两件?460 mm离轴抛物面元件面形PSD1值相对于之前降低了近70%,达到2.835 nm,并且PV小于0.16λ(632.8 nm),RMS小于0.02λ。  相似文献   

8.
轻量化的碳化硅反射镜有自己独特的结构特点,加工中的变形与传统实体反射镜不同,对加工后的面形结果有独特的影响。对一直径为318mm的轻量化碳化硅反射镜进行了传统的研磨抛光,由于镜面变形对抛光结果带来了很大的影响,其面形误差的RMS值在0.048λ(λ=0.6328μma)左右就不再收敛。对抛光状态的镜体进行了有限元分析,探讨了减轻镜面变形对抛光结果影响的方法。采用计算机控制小磨头对该反射镜进行了确定性抛光,有效地降低了镜面形变的影响,使面形满足了精度的要求。  相似文献   

9.
针对超薄光学元件在加工过程中因重力和磨头产生应力形变的特点,提出了一种高效、先进的超薄光学元件综合加工方法。该方法综合运用了精密铣磨、精密抛光、离子束修形等先进技术进行面形控制。在铣磨阶段采用受力分析和误差补偿的方法降低了元件变形引入的面形误差;在抛光阶段通过气囊抛光和沥青抛光的迭代实现了面形快速收敛;在离子束加工阶段充分利用其非接触、无应力的加工特点实现了高精度面形修正。实验选择径厚比为34(边长152 mm,厚度6.35 mm)的方形融石英材料进行加工实验。结果表明:在铣磨、抛光、修形阶段的各项指标都达到了精密光学元件的加工水平,最终的面形精度为PV=25 nm,RMS=1.5 nm。该加工方法可以广泛应用于超薄光学元件的高精度加工。  相似文献   

10.
近年来,磁流变抛光作为一种确定性加工方法已成为获得高精度非球面的重要手段。作者以回转对称二次抛物面为例,分析了磁流变抛光中使用抛光轮校正工件位置的理论方法,并通过实验在Φ230 mm熔石英样件上验证对刀理论,分别在X方向和Y方向以少于3次的调整次数校正工件位置,实现了X方向、Y方向偏置量均低于0.009 mm;采用磁流变抛光技术对工件进行了修形实验验证,加工后面形精度RMS由λ/7收敛至λ/40。实验结果表明:作者提出的非球面工件位置对刀校正方法简单、可靠,能够很好地对工件进行精确定位,利于高精度非球面磁流变抛光加工。  相似文献   

11.
李宁  尹自强  田富竟 《应用光学》2014,35(1):116-121
鉴于光学零件高陡度凹曲面的抛光是光学加工的一个难题,轮带光学确定性抛光方法是解决此类零件抛光的有效方法之一;提出轮带光学抛光技术的原理和方法。研究了轮带光学抛光方法修形的可行性,采用五轴精密数控机床系统对一块直径Ф80 mm的K9玻璃平面样镜进行了修形试验,经过3次迭代修形使其面形精度均方根误差(RMS)由初始的0.109 提高到0.028 ,平均每次收敛率达到1.3。实验结果表明,应用轮带光学抛光技术进行光学镜面修形,面形收敛速度较快,加工精度较高。本实验验证了轮带光学抛光技术的修形能力,为高陡度光学零件的抛光提供了研究基础。  相似文献   

12.
为实现高精度中小口径非球面的加工,介绍了一种非球面修抛技术。基于Preston假设,将抛光过程描述成一个线性方程,计算得到材料的去除量与抛光时间、抛光压力和零件转速之间的函数关系。设计了整体修抛法和环带修抛法两种方法,在数控抛光的基础上,对口径为Ф117mm的凹抛物面和口径为Ф17mm凸双曲面进行修抛,修抛后非球面的面形精度PV值为0.184μm,RMS均小于0.032μm,达到了工程化应用要求,实现了中小口径非球面的高精度加工。  相似文献   

13.
马占龙 《光学技术》2012,38(3):279-282
为实现高精度光学元件的面形修正,介绍了计算机控制光学加工技术的基本理论,通过实验法对其去除函数进行了提取,采用迭代法对驻留时间进行了求解,并采用邻域平均值法对边缘数据进行了平滑延拓。以一口径φ100mm的光学元件面形为例进行了模拟加工,得到了其驻留时间分布和加工后面形,加工1843.3min后其面形由初始的PV值243.132nm、rms值53.154nm降为PV值21nm、rms值1.6nm,面形精度改善明显。结果表明:所得去除函数可以用于高精度面形修正,但加工效率仍需提高,所用驻留时间求解方法精度较高,并且经平滑延拓后边缘效应得到有效控制,为后续的实际高精度面形修正提供了理论依据。  相似文献   

14.
一种高效率小口径非球面数控抛光方法   总被引:4,自引:1,他引:3  
自主设计研制的非球面数控抛光机采用气囊式抛光工具,可抛光100mm以下的非球面光学零件,针对口径35mm凹非球面透镜(顶点曲率半径R=-108.14mm的双曲面),研究了非球面的抛光工艺,并确定了相关工艺参数,抛光时间大约为20min,第二次次抛光后元件面形精度达到1.08μm,满足了该零件的使用要求。相对于现有设备美国Precitich公司的Microfinish 300型CNC非球面抛光机,该抛光设备实现了中等精度要求的小口径非球面元件的高效数控抛光。目前该抛光机已经成功地应用于某光学系统非球面零件的批量生产中。  相似文献   

15.
为了解决长条形镜面面形拟合中各项不正交,无法在调整中利用像差指导计算机辅助装调的问题,本文建立了一套合理的拟合模型。该模型以矩阵求解正交化Zernike多项式系数为基础,将离散的数据点作为定义域,对已选取的Zernike项进行定义域内正交化计算,并以获得的各正交项为基底,实现对长条形镜面及其他异形光学镜面的正交化多项式拟合求解。进而确定在干涉检测中加工误差与装调误差的分离,为光学镜面的最终面形收敛提供保障。根据本文实验结果,对一口径600 mm×260 mm,PV与RMS值分别为5. 889λ及1. 002λ的长条形光学镜面进行拟合,利用Metropro去像散后,面形未得到收敛,PV与RMS值分别变为7. 448λ及1. 725λ。而采用本文算法处理后,其PV与RMS值分别收敛为4. 666λ及0. 679λ,验证了本文方法对于长条形镜面拟合的正确性。  相似文献   

16.
 针对大型激光系统中光束质量低和波前畸变等特点,采用离子辅助电子束蒸发技术成功实现对多层膜残余应力的精确控制。通过分析氧化铪、氧化硅单层膜残余应力变化规律,研究了离子源束压、束流参量对膜层折射率、残余应力性质及大小的影响。540 mm×340 mm×60 mm规格大口径传输反射镜面形PV值达到0.5λ(λ=632 nm),小光束损伤测试情况下,样品元件的损伤阈值大于30 J/cm2(N-on-1,1 064 nm,5 ns),利用该技术制备的大口径传输反射镜已获得成功应用。  相似文献   

17.
磁流变抛光材料去除的研究   总被引:6,自引:0,他引:6  
磁流变抛光是近十年来的一种新兴的先进光学制造技术 ,它利用磁流变抛光液在梯度磁场中发生流变而形成的具有粘塑行为的柔性“小磨头”进行抛光。被抛光光学元件的材料去除是在抛光区内实现的。首先简要阐述了磁流变抛光的抛光机理 ,然后利用标准磁流变抛光液进行抛光实验。研究了磁流变抛光中几种主要工艺参数对抛光区的大小和形状以及材料去除率的影响情况。最后给出了磁流变抛光材料去除的规律。  相似文献   

18.
王孝坤 《光子学报》2014,(4):379-383
通过扩充激光跟踪仪的现有功能,提出了一种适用于非球面研磨和粗抛光阶段以及中低准确度非球面面形的快速检测方法.分析了测试原理,设计规划了检测流程.利用激光跟踪仪的靶标球对非球面表面进行多点接触测量,并将测量的结果与非球面CAD模型进行分析对比、处理和运算,获得非球面的面形分布信息.结合实例对一口径为420 mm×270 mm的离轴非球面进行了面形检测,并与零位补偿结果进行对比,结果表明,两种方法测试的面形误差分布是一致的,其峰谷值和均方根值的相对偏差分别仅为6.22%和3.37%.该方法无需其它辅助光学元件就能够准确地实现对大口径非球面面形的检测,测试数据处理和数学运算简单,实验操作简单易行.  相似文献   

19.
激光跟踪仪检验非球面面形的方法   总被引:3,自引:1,他引:2  
王孝坤 《光子学报》2012,41(4):379-383
通过扩充激光跟踪仪的现有功能,提出了一种适用于非球面研磨和粗抛光阶段以及中低准确度非球面面形的快速检测方法.分析了测试原理,设计规划了检测流程.利用激光跟踪仪的靶标球对非球面表面进行多点接触测量,并将测量的结果与非球面CAD模型进行分析对比、处理和运算,获得非球面的面形分布信息,结合实例对一口径为420 mm×270 mm的离轴非球面进行了面形检测,并与零位补偿结果进行对比,结果表明,两种方法测试的面形误差分布是一致的,其峰谷值和均方根值的相对偏差分别仅为6.22%和3.37%.该方法无需其它辅助光学元件就能够准确地实现对大口径非球面面形的检测,测试数据处理和数学运算简单,实验操作简单易行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号