首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on a higher order dynamic approximate theory developed in the present study for anisotropic elastic plates, two dynamic models, discrete and continuum models (DM and CM), are proposed for layered composites. Of the two models, CM is more important, which is established in the study of periodic layered composites using smoothing operations. CM has the properties: it contains inherently the interface and Floquet conditions and facilitates the analysis of the composite, in particular, when the number of laminae in the composite is large; it contains all kinds of deformation modes of the layered composite; its validity range for frequencies and wave numbers may be enlarged by increasing, respectively, the orders of the theory and interface conditions. CM is assessed by comparing its prediction with the exact for the spectra of harmonic waves propagating in various directions of a two-phase periodic layered composite, as well as, for transient dynamic response of a composite slab induced by waves propagating perpendicular and parallel to layering. A good comparison is observed in the results and it is found that the model predicts very well the periodic structure of spectra with passing and stopping bands for harmonic waves propagating perpendicular to layering. In view of the results, the physical significance of Floquet wave number is also discussed in the study.  相似文献   

2.
黄虎 《力学学报》2004,36(4):455-459
为了反映近岸区域实际存在的多孔介质海底效应,并且考虑到波浪在刚性海底上传播模型的 最新研究进展,运用Green第二恒等式建立了波浪在非平整、多孔介质海底上传播的复合方 程. 假设水深和多孔介质海底层厚度均由两种分量组成:慢变分量,其水平变化的长度尺度大于 表面波的波长;快变分量,其水平变化的长度尺度与表面波的波长等阶,但其振幅小于表面 波的振幅. 另外,多孔介质层下部边界的快变分量比水深的快变分量小1个量级. 针对水体层和多孔介质层,选择Green第二恒等式方法给出了波浪传播和渗透的复合方程, 它在交接面上满足压力和垂直渗透速度的连续性条件,可充分考虑波数变化的一般连续性, 并包含了某些著名的扩展型缓坡方程.  相似文献   

3.
The transmission properties of elastic waves propagating in a three-dimensional composite structure embedded periodically with spherical inclusions are analyzed by the transfer matrix method in this paper. Firstly, the periodic composite structures are divided into many layers, the transfer matrix of monolayer structure is deduced by the wave equations, and the transfer matrix of the entire structure is obtained in the case of boundary conditions of displacement and stress continuity between layers. Then, the effective impedance of the structure is analyzed to calculate its reflectivity and transmissivity of vibration isolation. Finally, numerical simulation is carried out; the experiment results validate the accuracy and feasibility of the method adopted in the paper and some useful conclusions are obtained. Project (No. 50075029) supported by the National Natural Science Foundation of China.  相似文献   

4.
This paper deals with the band structures of thermoelastic waves in nano-scale phononic crystal or metamaterial beams considering nano-size effects. The nonlocal coupled thermoelastic governing equations are derived using the Green–Naghdi theory of the generalized coupled thermoelasticity with energy dissipation and Eringen’s nonlocal theory. The derived governing equations are analytically solved and the field quantities including the temperature and the deflection are obtained in the closed forms. Using the proposed analytical solution, the transfer matrix between two unit-cells are obtained using the thermal and mechanical continuity conditions on the interfaces between the unit-cells and between the two sections of each unit-cell. The band structures of the phononic crystals are obtained using the Bloch–Floquet theorem. The detailed discussions are presented for the band structures of nonlocal thermoelastic waves in nano-scale aluminum/epoxy phononic crystal or metamaterial beams. Also, the effects of the small-scale parameter and the thickness of the epoxy layers on the band structures are studied and discussed by using the derived analytical solution.  相似文献   

5.
在推导层状粘接复合结构良好粘接及存在弱界面、滑移界面和脱层等几种不同界面条件下声导波的广义频散方程的基础上,分析了界面径向与轴向力学参数对声导波传播特性的影响,进一步提出以频散特性为基础的超声导波定征方法和在最小二乘意义下的反向算法对粘接复合结构层间界面力学参数进行了估计,分析了影响估计准确性的各种因素,研究了超声导波定征方法对粘接复合结构层间力学参数的灵敏度及其在误差传递中的意义。  相似文献   

6.
This paper investigates shear horizontal (SH) waves propagating in a periodically layered structure that consists of piezoelectric (PE) layers perfectly bonded with piezomagnetic (PM) layers alternately. The explicit dispersion relations are derived for the two cases when the propagation directions of SH waves are normal to the interface and parallel to the interface, respectively. The asymptotic expressions for dispersion relations are also given when the wave number is extremely small. Numerical results for stop band effect and phase velocity are presented for a periodic system of alternating BaTiO3 and Terfenol-D layers. The influence of volume fraction on stop band effect and dispersion behaviors is discussed and revealed.  相似文献   

7.
Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are considered. The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions. The expressions of localization factor and localization length in the disordered periodic structures are presented. For the disordered periodic piezoelectric structures, the numerical results of localization factor and localization length are presented and discussed. It can be seen from the results that the frequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones, and the larger the coefficient of variation is, the greater the degree of wave localization is. The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes. For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency, but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency.The project supported by National Natural Science Foundation of China (10632020, 10672017 and 20451057).  相似文献   

8.
Active control of bending waves in a periodic beam by the Timoshenko beam theory is concerned. A discussion about the possible wave solutions for periodic beams and their control by forces is presented. Wave propagation in a periodic beam is studied. The transfer matrix between two consecutive unit cells is obtained based on the continuity conditions. Wave amplitudes are derived by employing the Bloch-Floquet theorem and the transfer matrix. The influences of the propagating constant on the wave amplitudes are considered. It is shown that vibrations are still needed to be suppressed in the pass-band regions. Wave-suppression strategy described in this paper is employed to eliminate the propagating disturbance of an infinite periodic beam. A minimum wave-suppression strategy is compared with the classical wave-suppression strategy.  相似文献   

9.
The paper is concerned with longitudinal and transverse waves propagating at a right angle to the layers of a nanocomposite material with initial (process-induced residual) stresses. The composite consists of alternating layers of two dissimilar materials. The materials are assumed nonlinearly elastic and described by the Murnaghan potential. For simulation of wave propagation, a problem is formulated within the framework of the three-dimensional linearized theory of elasticity for finite prestrains. It is established that the relative velocities of waves depend linearly on small prestresses. In some composite materials, however, the thicknesses of the layers may be in a ratio such that the wave velocities are independent of the prestress level __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 7, pp. 3–22, July 2006.  相似文献   

10.
In the present investigation on the dynamic plastic buckling of cylindrical shells under axial compression waves, the critical axial stress and the exponential parameter of inertia terms in stability equations are treated as a couple of characteristic parameters. The criterion of transformation and conservation of energy in the process of buckling initiation is used to derive the supplementary restraint equation of buckling deformation at the fronts of axial elastic and plastic compression waves. The supplementary restraint equation, stability equations, boundary conditions and continuity conditions constitute the necessary and sufficient conditions of determining the two characteristic parameters. Two characteristic equations are derived for the two characteristic parameters. The critical axial stress or the critical buckling time, the exponential parameter of inertia terms and the initial modes of buckling deformation are calculated quantitatively from the solution of the characteristic equations.  相似文献   

11.
The equations and boundary conditions describing plane-parallel potential motions of two superposed layers of stably stratified magnetic fluid are formulated. The fluid is assumed to fill entirely a horizontal plane channel in the presence of a uniform longitudinal magnetic field induced by external sources. With reference to the case of long waves propagating over the interface between the upper and lower layers, it is shown that the action of the field may be interpreted as the result of an increase in the nondimensional surface tension by an amount proportional to the square of the undisturbed field. In the linear formulation the effect of the field on the evolution of a long-wave perturbation of the initially plane interface is investigated. Korteweg-de Vries equations with quadratic and cubic nonlinearities are derived and the action of the field on the internal solitary waves is analyzed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 126–133, May–June, 1993.  相似文献   

12.
Vibration properties of a rotating Functionally Graded Electro-Rheological (FGER) beam are investigated. In the composition of three layered beam, an electrorheological fluid layer is embedded between two functionally graded material layers. Classical beam theory is applied in the analysis of Functionally Graded Material (FGM) layers. Using Hamilton??s principle and finite element method (FEM), equations of motion of the FGER beam are derived. The effects of various parameters such as FGM volume fraction index, rotating speed, thickness of the viscoelastic core and electric field on the resonant frequencies and modal loss factors are studied. The results quantify the significant effect of the FGM distribution and the ER core on the vibration suppression of the rotating composite beam.  相似文献   

13.
This paper describes the modified bending equations of layered orthotropic plates in the first approximation. The approximation of the solution of the equation of the three-dimensional theory of elasticity by the Legendre polynomial segments is used to obtain differential equations of the elastic layer. For the approximation of equilibrium equations and boundary conditions of three-dimensional theory of elasticity, several approximations of each desired function (stresses and displacements) are used. The stresses at the internal points of the plate are determined from the defining equations for the orthotropic material, averaged with respect to the plate thickness. The construction of the bending equations of layered plates for each layer is carried out with the help of the elastic layer equations and the conjugation conditions on the boundaries between layers, which are conditions for the continuity of normal stresses and displacements. The numerical solution of the problem of bending of the rectangular layered plate obtained with the help of modified equations is compared with an analytical solution. It is determined that the maximum error in determining the stresses does not exceed 3 %.  相似文献   

14.
In recent years experiments on uniaxially reinforced composites have revealed anomalous behavior in the stress-wave propagation characteristics of these materials. Whenever the exposed ends of both composite constituents were subjected to moderate pressures of a few kilobars the number of stable propagating waves generated within the composite exceeded by one the number of waves calculated through conventional composite models. This effect greatly increased the wave dispersion and rise-time in the experimentally observed stress wave.The key to the origin of this phenomenon is quite elementary. The composite debonds internally. When the bond between the reinforcing and matrix fails, the composite attains an additional degree of freedom which results in an additional stable propagating wave. Since conventional composite models do not allow for this debonding, they cannot account for the resulting wave. However, as was shown in an earlier paper, direct application of the theory of elasticity to this problem results in wave velocities and mode shapes for all of the waves.The solution to the total problem, including the determination of the various wave amplitudes, was previously hampered by an insufficient set of boundary conditions. The usual procedure was to impose continuity of stress and displacement at the boundary between the composite and the adjoining homogeneous material where the volumetric averages of stress and displacement were used for the composite. While these conditions are necessary and sufficient for the bonded composite problem, they are insufficient for the debonded composite problem. The additional degree of freedom in the debonded problem makes the use of an additional boundary condition necessary. This additional boundary condition is the subject of this paper.  相似文献   

15.
Propagation of elastic phononic waves in layered composite materials is analyzed by introducing nonsmooth periodic coordinates associated with structural specifics of the materials. Spatial scales of the original (smooth) coordinates are estimated by the wave lengths. In terms of the new coordinates, the homogenization procedure occurs naturally from the continuity conditions imposed on elastic displacements and forces at layer interfaces. As a result, higher-order asymptotic approximations describing spatiotemporal ‘macro’- and ‘micro’-effects of wave propagation are obtained in closed form. Such solutions provide visualizations for the wave shapes illustrating their structure induced local details. In particular, beat-wise mode shapes and effective anisotropy of acoustic wave propagation are revealed. The subharmonic beating in wave modes occur when wave lengths orthogonal to layers is about to ‘resonate’ with layer’ thickness. If the wave speed has a non-zero projection along the layers, then phase shifts between the beats are observed in different cross sections perpendicular to the layers.  相似文献   

16.
A class of problems of composite laminates and functionally graded materials (FGM) under extension, twisting, and bending is formulated in the state space setting. A solution approach for exact analysis of the deformation and stress fields in the media is developed. Exact solutions for torsion of cross-ply laminates and certain FGM are derived, which satisfy exactly the equations of anisotropic elasticity, the end conditions, the traction-free boundary conditions on the bounding planes of the rectangular section, and the interfacial continuity conditions in multilayered composite laminates, regardless of the number of layers. The solutions serve as useful benchmarks for numerical modeling and material characterization of composite laminates and FGM.  相似文献   

17.
Stresses are determined for a finite cylindrical crack that is propagating with a constant velocity in a nonhomogeneous cylindrical elastic layer, sandwiched between an infinite elastic medium and a circular elastic cylinder made from another material. The Galilean transformation is employed to express the wave equations in terms of coordinates that are attached to the moving crack. An internal gas pressure is then applied to the crack surfaces. The solution is derived by dividing the nonhomogeneous interfacial layer into several homogeneous cylindrical layers with different material properties. The boundary conditions are reduced to two pairs of dual integral equations. These equations are solved by expanding the differences in the crack surface displacements into a series of functions that are equal to zero outside the crack. The Schmidt method is then used to solve for the unknown coefficients in the series. Numerical calculations for the stress intensity factors were performed for speeds and composite material combinations.  相似文献   

18.
19.
研究弹性波散射与多重散射的T矩阵方法。首先,基于Helmholtz体内和体外公式推导了对应于圆柱型散射体的T矩阵元素的具体表达式;接着分析了在含多个随机分布圆柱型散射体的随机非均匀介质中弹性波的多重散射并给出在统计平均意义下的相干波的定义以及波速和衰减系数计算公式;最后,针对Ge/Al、Sic/Al复合材料用Matlab进行了编程和数值计算;计算单个柱型散射体的散射截面以及随机非均匀介质中相干波的速度和衰减系数,分析了这种介质的频散特性。  相似文献   

20.
层状层电介质空间轴对称问题的状态空间解   总被引:15,自引:0,他引:15  
王建国 《力学学报》2001,33(1):115-120
从横观各向同性压电介质空间轴对称问题的基本方程出发,建立了压电介质空间轴对称问题的状态变量方程,对状态变量方程进行Hankel变换,得到以状态变量表示的单层压电介质在Hankel变换空间中的解,讨论了3种不同特征根的情况,利用提出的解得到了半无限压电体在垂直集中载荷和点电荷作出下的Boussinesq解。利用传递矩阵方法导出了多层压电介质空间轴对称问题解一般解析式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号