首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The connection between granular gases and sticky gases has recently been considered, leading to the conjecture that inelastic collapse is avoided for space dimensions higher than 4. We report Molecular Dynamics simulations of hard inelastic spheres in dimensions 4, 5 and 6. The evolution of the granular medium is monitored throughout the cooling process. The behaviour is found to be very similar to that of a two-dimensional system, with a shearing-like instability of the velocity field and inelastic collapse when collisions are inelastic enough, showing that the connection with sticky gases needs to be revised. Received 17 April 2000 and Received in final form 7 June 2000  相似文献   

2.
Tracer dispersion in Newtonian and shear-thinning fluids (scleroglucan-water polymer solutions) flowing through single and double porosity grain packings has been studied experimentally using both classical transmission dispersion and echo dispersion (in the latter, the concentration variation front is pumped back through a detector at the inlet after penetrating for a chosen distance into the sample). Transmission dispersion increases markedly in both types of samples with the shear thinning index of the fluid at all Péclet numbers (except when molecular diffusion is dominant). Echo and transmission experiments give nearly identical dispersivity values for Newtonian fluids while echo dispersivity is lower than transmission for shear thinning ones. The normalized dispersivity difference has same order of magnitude for single and double porosity samples and increases with the shear thinning exponent α (by a factor of 2 between α = 0.35 and α = 0.60). This difference may be due to heterogeneities inducing permeability variations of small amplitude over distances of the order of the sample section : their influence on tracer dispersion is partly reversible with respect to a change of the flow direction and is only detectable if it is amplified by the shear-thinning properties of the fluid. Received 19 September 2001  相似文献   

3.
We present an experimental study of the Faraday instability in which we compare the behavior of a Newtonian fluid (water-glycerine mixture) with that of a semi-dilute non-Newtonian solution of high molecular weight polymer. We show that although the dispersion relation of surface waves, derived for a layer of inviscid fluid, remains valid in that particular non-Newtonian case, the behavior of the instability threshold with frequency strongly differs from the Newtonian case. We explain this effect as a result of a frequency-dependent viscosity. The linear stability analysis of the non-Newtonian case shows a perfect agreement with the experimental results both for the dispersion relation and for the reduction of the instability threshold. We discuss the use of the characteristics of the Faraday experiment as a measurement tool to determine frequency dependent properties of non-Newtonian fluids. Received 5 January 1999  相似文献   

4.
It is shown using Vlasov dynamics that the density distribution corresponding to a mean field Bose condensate in an external time dependent potential is adiabatically stable whereas density distributions corresponding to finite temperature are not. Received: 27 February 1998 / Revised: 20 April 1998 / Accepted: 23 April 1998  相似文献   

5.
We report experimental results on the behavior of an ensemble of inelastically colliding particles, excited by a vibrated piston in a vertical cylinder. When the particle number is increased, we observe a transition from a regime where the particles have erratic motions (“granular gas”) to a collective behavior where all the particles bounce like a nearly solid body. In the gas-like regime, we measure the density of particles as a function of the altitude and the pressure as a function of the number N of particles. The atmosphere is found to be exponential far enough from the piston, and the “granular temperature”, T, dependence on the piston velocity, V, is of the form , where is a decreasing function of N. This may explain previous conflicting numerical results. Received 1 February 1999  相似文献   

6.
An analytical model is presented to describe the dispersion of tracers in a power-law fluid flowing through a statistically homogeneous and isotropic porous medium. The model is an extension of Saffman's approach to the case of non-Newtonian fluids. It is shown that an effective viscosity depending on the pressure gradient and on the characteristics of the fluid, must be introduced to satisfy Darcy's law. An analytical expression of the longitudinal dispersivity is given as a function of the Peclet number Pe and of the power-law index n that characterizes the dependence of the viscosity on the shear rate . As the flow velocity increases the dispersivity obeys an asymptotic power law: . This asymptotic regime is achieved at moderate Peclet numbers with strongly non-Newtonian fluids and on the contrary at very large values when n goes to 1 ( for n=0.9). This reflects the cross-over from a scaling behaviour for towards a logarithmic behaviour predicted for Newtonian fluids (n=1). Received: 22 July 1997 / Revised and Accepted: 2 July 1998  相似文献   

7.
We investigate autogenous fragmentation of dry granular material in rotating cylinders using two-dimensional molecular dynamics. By evaluation of spatial force distributions achieved numerically for various rotation velocities we argue that comminution occurs mainly due to the existence of force chains. A statistical analysis of these force chains explains the spatial distribution of comminution efficiency in ball mills as measured experimentally by Rothkegel [1] and Rolf [2]. For animated sequences of our simulations see http://summa.physik.hu-berlin.de/kies/mill/bm.html Received 19 January 2000  相似文献   

8.
We have studied the maximal angle of stability of a granular packing confined between two walls. The effect of the walls is to increase the angle dramatically. The decay of the angle with the distance between the walls is exponential with a characteristic length which is a function of the beads diameter. The effect of the roughness of the walls has been also studied. Received 1 April 1999  相似文献   

9.
The paper deals with the stationary distribution of charged particles moving in a material medium, having scattering and absorption properties, in which a uniform electric field is present. The purpose of the work is finding analytical solutions in simplified but physically significant situations and comparing different approximations based on a spherical-harmonics expansion of the velocity distribution. Received: 28 July 1998  相似文献   

10.
Using NMR velocimetry and mechanical measurements we study the flow dynamics, within a cone-and-plate rheometer, of the wormlike micelle system, cetylpyridinium chloride/sodium salicylate (CPyCl/NaSal) at 100 mM/60 mM concentration in distilled water. Depending on precise conditions within the system, two classes of behaviour are observed, one in which the boundary between different shear rate phases fluctuates rapidly (on the order of tens of milliseconds) and one in which it migrates slowly with a time constant of many seconds. These modes of behaviour may depend on minor solution impurities, which presumably affect the detailed constitutive properties, but also on the externally applied shear rate within a given system. We argue that the slow migrations are governed by stress relaxation effects while the rapid migrations are flow driven and arise from interfacial instability. Received: 2 June 1998 / Received in final form and Accepted: 27 July 1998  相似文献   

11.
A model for ripple instabilities in granular media   总被引:1,自引:0,他引:1  
We extend the model of surface granular flow proposed in [#!bcre!#] to account for the effect of an external `wind', which acts as to dislodge particles from the static bed, such that a stationary state of flowing grains is reached. We discuss in detail how this mechanism can be described in a phenomenological way, and show that a flat bed is linearly unstable against ripple formation in a certain region of parameter space. We focus in particular on the (realistic) case where the migration velocity of the instability is much smaller than the grains' velocity. In this limit, the full dispersion relation can be established. We relate the critical wave vector to the mean hopping length and to the ratio of the flight time to the `stick' time. We provide an intuitive interpretation of the instability. Received: 30 January 1998 / Revised: 12 May 1998 / Accepted: 8 June 1998  相似文献   

12.
In horizontally shaken granular material different types of pattern formation have been reported. We want to deal with the convection instability which has been observed in experiments and which recently has been investigated numerically. Using two dimensional molecular dynamics we show that the convection pattern depends crucially on the inelastic properties of the material. The concept of restitution coefficient provides arguments for the change of the behaviour with varying inelasticity. Received 3 March 1999  相似文献   

13.
We derive a novel thin-film equation for linear viscoelastic media describable by generalized Maxwell or Jeffreys models. As a first application of this equation we discuss the shape of a liquid rim near a dewetting front. Although the dynamics of the liquid is equivalent to that of a phenomenological model recently proposed by Herminghaus et al. (S. Herminghaus, R. Seemann, K. Jacobs, Phys. Rev. Lett. 89, 056101 (2002)), the liquid rim profile in our model always shows oscillatory behaviour, contrary to that obtained in the former. This difference in behaviour is attributed to a different treatment of slip in both models.  相似文献   

14.
The force perturbation field in a two-dimensional pile of frictionless gravity-loaded discs or spheres arising from lattice distortions is derived to first order. The starting point is the model proposed by Liffman et al. (Powder Technology (1992) pp. 255-267) and Hong (Phys. Rev. E 47, 760-762 (1993)) in which discs of uniform size are arranged on a regular lattice: this predicts a uniform normal stress distribution at the base of the pile. The analysis is applied to two problems: (i) deformable (rather than rigid) grains that undergo Hertzian deformation at the points of contact; (ii) a pile containing a gradient in particle size from the centre to the free surfaces. The former results in the classical pressure dip at the centre; the latter also produces a dip if the larger particles are at the centre. Received 29 January 1998 and Received in final form 7 September 1998  相似文献   

15.
Grain segregation mechanism in aeolian sand ripples   总被引:2,自引:0,他引:2  
Many sedimentary rocks are formed by migration of sand ripples. Thin layers of coarse and fine sand are present in these rocks, and understanding how layers in sandstone are created has been a longstanding question. Here, we propose a mechanism for the origin of the most common layered sedimentary structures such as inverse graded climbing ripple lamination and cross-stratification patterns. The mechanism involves a competition between three segregation processes: (i) size-segregation and (ii) shape-segregation during transport and rolling, and (iii) size segregation due to different hopping lengths of the small and large grains. We develop a discrete model of grain dynamics which incorporates the coupling between moving grains and the static sand surface, as well as the different properties of grains, such as size and roughness, in order to test the plausibility of this physical mechanism. Received 19 July 1999 and Received in final form 4 August 1999  相似文献   

16.
17.
Scaling approach of the convective drying of a porous medium   总被引:1,自引:0,他引:1  
We propose a simplified, theoretical approach of the evolution of liquid distribution during the convective drying of a granular packing. In the absence of gravity effects three regimes are distinguished according to the relative importance of surface evaporation, capillarity or evaporation from the interior of the sample. The evolution of the drying rate as a function of the saturation can be inferred from the characteristic velocities associated to each of these effects. We also carried out drying experiments of bead packings saturated with ethanol, at four different velocities of the boundary convection current, and with bead size ranging from 4.5 to 100 μm. The drying curves exhibit different regimes with a scaling as a function of particle radius and current velocity as predicted by the theory. Received 7 June 1999 and Received in final form 25 October 1999  相似文献   

18.
The present paper develops a Statistical Mechanics approach to the inherent states of glassy systems and granular materials by following the original ideas proposed by Edwards for granular media. We consider three lattice models (a diluted spin glass, a system of hard spheres under gravity and a hard-spheres binary mixture under gravity) introduced to describe glassy and granular systems. They are evolved using a “tap dynamics” analogous to that of experiments on granular media. We show that the asymptotic states reached in such a dynamics are not dependent on the particular sample history and are characterized by a few thermodynamical parameters. We assume that under stationarity these systems are distributed in their inherent states satisfying the principle of maximum entropy. This leads to a generalized Gibbs distribution characterized by new “thermodynamical” parameters, called “configurational temperatures” (related to Edwards compactivity for granular materials). Finally, we show by Monte Carlo calculations that the average of macroscopic quantities over the tap dynamics and over such distribution indeed coincide. In particular, in the diluted spin glass and in the system of hard spheres under gravity, the asymptotic states reached by the system are found to be described by a single “configurational temperature”. Whereas in the hard-spheres binary mixture under gravity the asymptotic states reached by the system are found to be described by two thermodynamic parameters, coinciding with the two configurational temperatures which characterize the distribution among the inherent states when the principle of maximum entropy is satisfied under the constraint that the energies of the two species are independently fixed. Received 19 March 2002 and Received in final form 14 June 2002  相似文献   

19.
We have experimentally studied the coaxial settling of three identical non-Brownian spheres in a shear-thinning fluid at small Reynolds numbers. While settling, the particles create corridors of reduced viscosity in their wake and, if they are initially close enough to one another, they can form stable clusters. By analogy with previous results obtained on two-particle interaction in the first part of this work, we show that the particle velocities can be satisfactorily described using a first-order expression and assuming that the reduced viscosity remains constant. We report systematic experiments performed at different initial separation distances between particles and the use of our simple model allows the prediction of the settling behaviour and in particular the conditions for clusters formation. We thus show that particle aggregation can occur even for large initial distances between particles and within times that are small compared to the time scales in Newtonian fluids. Received 10 July 2002 RID="a" ID="a"e-mail: talini@fast.u-psud.fr  相似文献   

20.
The instability, rupture, and subsequent growth of holes in a thin Jeffreys-type viscoelastic film under the influence of long-range van der Waals force are investigated using both linear stability analysis and nonlinear numerical solutions. The linear stability analysis of full governing equations valid for arbitrary wave numbers shows that although fluid rheology does not influence the dominant length scale of the instability, it significantly affects the growth rate. It is shown that neglect of inertia and solvent dynamics results in a nonphysical singularity in the growth rate beyond a critical value of relaxation time. We further carry out numerical simulations of a set of long-wave, nonlinear differential equations (also derived in Rauscher et al., Eur. Phys. J. E 17, 373 (2005)) governing the evolution of the free surface. The nonlinear simulations, in their domain of validity, confirm the results of the linear analysis. Interestingly, results from nonlinear simulations further show that both for Newtonian and viscoelastic liquids, the shape and the dewetting dynamics of a hole are identical when examined in terms of a rescaled time which depends on rheological parameters. Thus, viscoelasticity of Jeffreys type merely accelerates the growth rate, without however affecting the important morphological characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号