首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The Korteweg-de Vries equation with the perturbing term εδ'(xVt) (a point-like dipole), which models disturbances produced by a small body moving in a liquid layer, is considered. In the case V<0, when the moving dipole emits a quasi-linear monochromatic wave, perturbation of the emission spectrum due to collision of the dipole with a free soliton is investigated. It is demonstrated that prior to the collision (at ft → − ∞) the resultant spectrum's width is exponentially small in ∣t∣, while after the collision (at t → + ∞) the width is ∾t−1. Then it is demonstrated that in the case V>0 (a non-emitting dipole) a soliton may be pinned by the moving dipole. In the adiabatic approximation, the pinned state is stable provided ε < 0. In this case a pair of solitons may also be pinned by the dipole, but that pinned state is unstable. Other types of solitary pinned profiles and their stability are discussed. Oscillations of a soliton near the adiabatically stable pinned state are accompanied by emission of quasi-linear waves. The emission intensity is calculated in a general form, and it is demonstrated that the oscillation are subject to radiative instability due to the fact that the energy of the system is not positive definite. The same model is considered with the Bürgers' dissipative term. The dissipation may compensate the radiative instability and render the pinned state of a soliton completely stable. Besides, it is demonstrated that the Bürgers' term gives rise to multisoliton pinned profiles. A maximum possible number of solitons in the profile is found.  相似文献   

2.
Spontaneous soliton motion has been demonstrated in different systems supporting cavity solitons. Here we consider the case of a semiconductor laser with an intracavity saturable absorber, and study the interactions between self-propelled solitons when two of them collide or when they hit a localised defect in the material gain. According to the soliton velocity and impact parameter, destructive or repulsive collisions may take place between travelling solitons. On the other hand, a very rich variety of dynamical behaviors can be observed when a travelling soliton hits a material defect of comparable size. We observe soliton destruction, repulsive or attractive interaction and two trapped cases. The behavior is mainly determined by the gain contrast between the defect and the background.  相似文献   

3.
We investigate kink-dark complex solitons(KDCSs) in a three-component Bose–Einstein condensate(BEC) with repulsive interactions and pair-transition(PT) effects. Soliton profiles critically depend on the phase differences between dark solitons excitation elements. We report a type of kink-dark soliton profile which shows a droplet-bubble-droplet with a density dip, in sharp contrast to previously studied bubble-droplets. The interaction between two KDCSs is further investigated. It demonstrates some striking particle transition behaviours during their collision processes, while soliton profiles survive after the collision. Additionally, we exhibit the state transition dynamics between a kink soliton and a dark soliton. These results suggest that PT effects can induce more abundant complex solitons dynamics in multi-component BEC.  相似文献   

4.
《Physics letters. A》1998,241(6):323-328
Using the complex Toda chain we model the asymptotic behavior of the N soliton pulse trains of the nonlinear Schrödinger equation. Stable asymptotic regimes are: (i) asymptotically free propagation of all N solitons; (ii) bound state regime where the N solitons may move quasi-equidistantly (QED); and (iii) various intermediate regimes. Our method allows one to determine analytically the set of initial soliton parameters corresponding to each regime. We list the soliton parameters, which ensure QED propagation of all N solitons since this is important for optical fiber communication.  相似文献   

5.
The Gross–Pitaevskii equation (GPE) describing the evolution of the Bose–Einstein condensate (BEC) order parameter for weakly interacting bosons supports dark solitons for repulsive interactions and bright solitons for attractive interactions. After a brief introduction to BEC and a general review of GPE solitons, we present our results on solitons that arise in the BEC of hard-core bosons, which is a system with strongly repulsive interactions. For a given background density, this system is found to support both a dark soliton and an antidark soliton (i.e., a bright soliton on a pedestal) for the density profile. When the background has more (less) holes than particles, the dark (antidark) soliton solution dies down as its velocity approaches the sound velocity of the system, while the antidark (dark) soliton persists all the way up to the sound velocity. This persistence is in contrast to the behaviour of the GPE dark soliton, which dies down at the Bogoliubov sound velocity. The energy–momentum dispersion relation for the solitons is shown to be similar to the exact quantum low-lying excitation spectrum found by Lieb for bosons with a delta-function interaction.  相似文献   

6.
李小路  江月松 《光学技术》2008,34(2):269-271
提出了利用EPP方法分析光纤布拉格光栅中隙孤子的解。基于非线性耦合模式方程(NLCME)定性地分析了无微扰条件下的隙孤子参数与孤子的其它特性的关系。利用EPP方法分析了隙孤子的能量特性。证明了隙孤子的速度影响形态特性和能量分布。从理论上解释了已观察到的一系列隙孤子的试验现象,对光纤布拉格光栅中产生隙孤子的应用具有理论意义。  相似文献   

7.
Shapira YP  Horowitz M 《Optics letters》2007,32(10):1211-1213
Using computer simulations, we demonstrate an optical cascadable AND gate based on soliton interaction in a fiber Bragg grating. A single soliton that is launched into the device is backreflected. When two solitons are launched, one of the solitons is transmitted while the other is backreflected. The time delay between the solitons may be few times longer than the duration of the solitons. We show that the interaction causes an increase in the frequency of one of the solitons that enables its transmission through the grating bandgap.  相似文献   

8.
One soliton of particle velocity and its amplitude (maximum particle velocity of one soliton) in Toda lattice is given analytically. It has also been known numerically that the maximum particle velocity (when the collision of two solitons reaches their maximum, we define Vn at this time as its maximum particle velocity) during the collision of two solitons moving in the same direction is equal to the difference between the amplitudes of two solitons if the difference is large enough; however, the maximum particle velocity is equal to the adding up of the amplitudes of two solitons moving in the opposite directions. The relationship between the maximum value of e-(rn)-1 and their initial amplitude of e-(rn)-1 is also given analytically in Toda lattice if the amplitudes of the two solitons are the same and their moving directions are opposite. Compared with the Boussinesq equation, there are differences between the Toda lattice equation and the Boussinesq equation for solitons during the collision.  相似文献   

9.
fiom coupled nonlinear Schrodinger equation which describes the birefringence near zero-dispersion wavelength, we derive the evolution feature of soliton parameters and get the differential equation describing the evolution of interval between solitons along with propagation distance. At the same time, we have made detailed numerical research on the propagation in dissipation system of standard fundamental soliton. The result shows that for attractive potential, the distance of oscillation increases dong with the loss increases. For repulsive potential, the distance of oscillation diverges faster along with the loss increases. If selecting the proper-optical fiber of high-order dispersion, the interaction between solitons in birefringence fiber can be eliminated.  相似文献   

10.
We report the results of systematic numerical analysis of collisions between two and three stable dissipative solitons in the two-dimensional (2D) complex Ginzburg-Landau equation (CGLE) with the cubic-quintic (CQ) combination of gain and loss terms. The equation may be realized as a model of a laser cavity which includes the spatial diffraction, together with the anomalous group-velocity dispersion (GVD) and spectral filtering acting in the temporal direction. Collisions between solitons are possible due to the Galilean invariance along the spatial axis. Outcomes of the collisions are identified by varying the GVD coefficient, β, and the collision “velocity” (actually, it is the spatial slope of the soliton’s trajectory). At small velocities, two or three in-phase solitons merge into a single standing one. At larger velocities, both in-phase soliton pairs and pairs of solitons with opposite signs suffer a transition into a delocalized chaotic state. At still larger velocities, all collisions become quasi-elastic. A new outcome is revealed by collisions between slow solitons with opposite signs: they self-trap into persistent wobbling dipoles, which are found in two modifications — horizontal at smaller β, and vertical if β is larger (the horizontal ones resemble “zigzag” bound states of two solitons known in the 1D CGL equation of the CQ type). Collisions between solitons with a finite mismatch between their trajectories are studied too.  相似文献   

11.
An analysis, based on the variational approach, is carried out of the interaction between two fully coherent solitons as well as two partially coherent soliton stripes in a medium with logarithmic nonlinearity. For the coherent case, it is found that the interaction can be both attractive and repulsive depending on the relative phase. The different interaction scenarios involve a bound system where the distance between the solitons oscillates with various magnitude of the oscillation amplitude, including total coalescence, and another where the solitons separate asymptotically. The effect of partial coherence on the soliton interaction is also studied by analyzing the interaction between two partially coherent soliton stripes. It is found that the strength as well as the character (attractive/repulsive) of the interaction changes for decreasing coherence. Thus, the general interaction properties of solitons in logarithmic nonlinear media are qualitatively similar to those of solitons in nonlinear Kerr media.  相似文献   

12.
We study the dynamics of bright and dark matter-wave solitons in the presence of a spatially varying nonlinearity. When the spatial variation does not involve zero crossings, a transformation is used to bring the problem to a standard nonlinear Schrödinger form, but with two additional terms: an effective potential one and a non-potential term. We illustrate how to apply perturbation theory of dark and bright solitons to the transformed equations. We develop the general case, but primarily focus on the non-standard special case whereby the potential term vanishes, for an inverse square spatial dependence of the nonlinearity. In both cases of repulsive and attractive interactions, appropriate versions of the soliton perturbation theory are shown to accurately describe the soliton dynamics.  相似文献   

13.
We study the existence and stability of stationary and moving solitary waves in a periodically modulated system governed by an extended cmKdV (complex modified Korteweg-de Vries) equation. The proposed equation describes, in particular, the co-propagation of two electromagnetic waves with different amplitudes and orthogonal linear polarizations in a liquid crystal waveguide, the stronger (nonlinear) wave actually carrying the soliton, while the other (a nearly linear one) creates an effective periodic potential. A variational analysis predicts solitons pinned at minima and maxima of the periodic potential, and the Vakhitov-Kolokolov criterion predicts that some of them may be stable. Numerical simulations confirm the existence of stable stationary solitary waves trapped at the minima of the potential, and show that persistently moving solitons exist too. The dynamics of pairs of interacting solitons is also studied. In the absence of the potential, the interaction is drastically different from the behavior known in the NLS (nonlinear Schrödinger) equation, as the force of the interaction between the cmKdV solitons is proportional to the sine, rather than cosine, of the phase difference between the solitons. In the presence of the potential, two solitons placed in one potential well form a persistently oscillating bound state.  相似文献   

14.
A phase diagram of pinned soliton structures in two dimensions has been found for a repulsive interactionU(x) between solitons withU(x)>0. The critical fugacity of the commensurate soliton structure is shown to be proportional toU(l), wherel is the period of this structure.  相似文献   

15.
We introduce both concave and convex rectangular apodizations in the middle of fiber Bragg gratings to achieve slow light. Based on the nonlinear coupled mode equations (NLCMEs), the transmission characteristics of grating solitons in rectangle-apodized gratings are numerically simulated and analyzed. The rectangular apodization can change the grating coupling coefficient to give rise to slow and capture the solitons in gratings. The effects of the soliton energy parameters, the width of rectangular apodization and the variation of the coupling coefficient on the soliton transmission are presented. The results show that, the velocity of solitons can be slowed down, and the capability to capture a soliton depends on the energy of input solitons, coupling coefficient, and the rectangular width. Two kinds of soliton capture methods are proposed and compared with each other.  相似文献   

16.
We show that optical gap solitons can be produced with velocities down to 4% of the group velocity of light using a grating-assisted coupler, i.e., a fiber Bragg grating that is linearly coupled to a non-Bragg fiber over a finite domain. Forward- and backward-moving light pulses in the non-Bragg fiber(s) that reach the coupling region simultaneously couple into the Bragg fiber and form a moving soliton, which then propagates beyond the coupling region. Two of these solitons can collide to create an even slower or stopped soliton.  相似文献   

17.
We investigated the interaction of discrete solitons with defect states fabricated in arrays of coupled waveguides. We achieved attractive and repulsive defects by decreasing and increasing, respectively, the spacing of one pair of waveguides in an otherwise uniform array. Linear and nonlinear propagation in the same samples show distinctly different properties. The role of the Peierls-Nabarro potential in the interaction of the soliton with the defect is discussed.  相似文献   

18.
We carry out a theoretical investigation of the properties of waveguides induced by photorefractive one-dimensional steady-state gray spatial solitons (i.e., screening solitons, photovoltaic solitons, and screening-photovoltaic solitons). We demonstrate that waveguides induced by photorefractive steady-state gray spatial solitons are only a single guided mode for both all soliton graynesses and all values of ρ, where ρ is the ratio between the soliton peak intensity and the dark irradiance, and moreover, waveguides induced by gray photovoltaic solitons for closed-circuit condition are also only a single guided mode for all electric current densities. We find that the confined energy near the center of a photorefractive steady-state gray spatial soliton increases with ρ and decreases with an increase in the soliton grayness. We also find that the confined energy near the center of a gray photovoltaic soliton for closed-circuit condition increases with the electric current density. On the other hand, waveguides induced by gray screening-photovoltaic solitons are gray screening soliton-induced waveguides when the bulk photovoltaic effect is neglectable and are gray photovoltaic soliton-induced waveguides when the external bias field is absent.  相似文献   

19.
黄春福  郭儒  刘思敏 《物理学报》2006,55(3):1218-1223
基于相干密度理论,数值地研究了饱和对数非线性支持的部分非相干亮孤子对的相互作用.研究表明,两个非相干亮孤子碰撞不仅能增大碰撞区的光强,还可以大大改善部分非相干光束的相干性.同时还研究了非相干性对孤子碰撞的影响,非相干性不仅抑制了孤子间的相干作用如吸引、排斥和能量交换,同时还由于非相干叠加作用而引入了弱的相互吸引. 关键词: 非相干性 饱和对数非线性 空间光孤子  相似文献   

20.
马红彩  王玉鑫  邓爱平 《中国物理 B》2022,31(1):10201-010201
We investigate the techniques for velocity resonance and apply them to construct soliton molecules using two solitons of the extended Lax equation.What is more,each soliton molecule can be transformed into an asymmetric soliton by changing the parameterφ.In addition,the collision between soliton molecules(or asymmetric soliton)and several soliton solutions is observed.Finally,some related pictures are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号