首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is well known that in the uniaxial ferromagnet in the presence of an external magnetic field perpendicular to the easy axis (hx) a continuous phase transition occurs for a critical value of this field. There are metastable and stable states if one includes a small field parallel to the easy axis (hz). The motion of the relaxation front of the metastable state is investigated. It is found that an “interphase wall of Neel-type” exists, its velocity is proportional to hz and increases when the critical point is approached.  相似文献   

2.
We have examined magnetizations as a function of temperature and magnetic field in layered perovskite manganites La2−2xSr1+2xMn2O7 single crystals (x=0.313, 0.315, 0.318, 0.320 and 0.350) in order to determine the phase boundary between two ferromagnets (one is an uniaxial ferromagnet whose easy axis is parallel to the c-axis and the other is a planar ferromagnet whose easy axis is within the ab-plane) and following results are obtained: (i) all the present manganites exhibit magnetic transitions from a ferromagnet to a paramagnet at 76, 107, 116, 120 and 125 K for x=0.313, 0.315, 0.318, 0.320 and 0.350, respectively; (ii) for x=0.318, 0.320 and 0.350, the magnetic structure is a planar ferromagnet below Curie temperature; (iii) for x=0.313 and 0.315, the magnetic structure changes from an uniaxial to a planar ferromagnet at 66 and 85 K, respectively. From the results described above we have constructed the magnetic phase diagram of layered perovskite manganite La2−2xSr1+2xMn2O7 (0.313?x?0.350).  相似文献   

3.
The H-T phase diagram of antiferromagnetic cobalt fluoride in an external magnetic field H perpendicular to the easy magnetization axis A is completed and used to construct a phase diagram in the variables H z and H y . In this diagram, the lines corresponding to second-order phase transitions (between an angular phase and a phase with antiferromagnetic vector IA) begin and end in fields of a spin-flip transition (i.e., in an exchange field). A peculiarity of these lines of phase transitions is that each of them has two tricritical points at which this line of second-order phase transitions transforms into a line of first-order phase transitions. A critical angle between the direction of the external magnetic field and the basal plane within which the first-order phase transition takes place is determined.  相似文献   

4.
We performed the magnetization measurement on Ho1−xDyxNi2B2C single crystals (x=0.1, 0.2, 0.3, 0.4, and 0.6) with magnetic field applied perpendicular and parallel to the c-axis. But only for the magnetic field perpendicular to the c-axis, the increase of Dy3+ concentration affects the magnetically ordered states of HoNi2B2C compound and makes the phase diagram more complicated. The antiferromagnetic ordering state attributed to Dy3+ sublattice starts to appear from a case of x=0.2 and finally the magnetic phase diagram becomes analogous to that of DyNi2B2C as x is increased which is consistent with the neutron scattering result.  相似文献   

5.
Easy and hard magnetization curves of YCo4B compound have been measured in the temperature range from 1.5 to 300 K. It was found that the uniaxial magnetic anisotropy field decreases with decreasing temperature, and the magnetic anisotropy changes from the easy c-axis to the easy cone at approximately 150 K. The easy and hard magnetization curves did not cross up to 6 T. High field susceptibility of the compound for magnetic field parallel to the alignment direction seems different from that for a field perpendicular to the alignment direction. A jump was observed along the easy magnetization curve at 1.5 and 77 K. The critical field of the jump is about 1.5 T at 1.5 K and 1.2 T at 77 K. The jump was shown to be reversible at 1.5 K by down hill measurement.  相似文献   

6.
Surface excitations in thin amorphous (Gd1?xCox)1?yMoy films obtained by the rf sputtering technique were studied. A microwave spectrometer at X-band was used for magnetic resonance investigation with external magnetic field rotating from perpendicular to parallel resonance orientations. The critical angle and angular dependence of the position of the surface mode and the uniform mode were determined. The Surface Inhomogeneity (SI) model was applied with symmetrical boundary conditions. The surface anisotropy energy term was assumed as a superposition of the uniaxial anisotropy term and a biaxial anisotropy term. The origin of the latter term is not known yet. We also performed the resonance experiment for different temperatures ranging from 180 to 300 K. From the experiment, the uniaxial surface anisotropy constant Ks1 and the biaxial surface anisotropy constant Ks2 were found as functions of the temperature; the uniaxial anisotropy energy against temperature changes the sign for y=0.02 from easy axis to easy plane while the biaxial surface anisotropy does not change its character.  相似文献   

7.
A uniaxial anisotropy is induced in partially ordered MnNi alloys in the composition range near Ni3Mn, by applying a magnetic field during cooling from room temperature to 77 K. The uniaxial anisotropy constant Ku depends on both the magnitude of the torque measuring field and that of the cooling field. The easy axis direction tends to be between the 〈100〉 and the direction of the cooling field. The value of Ku shows a maximum when the cooling field is applied along 〈100〉, amounting to 2 × 104 crg/cm3. On the other hand, the crystalline anisotropy is not affected by field cooling. When the temperature is raised from 77 K to 300 K, neither Ku nor the rotational hysterisis loss is observed to have any critical temperature, for a torque measuring field of 20 kOe. As atomic ordering proceeds, these effects become smaller and appear to vanish in the perfectly ordered state.  相似文献   

8.
Study of parallel and perpendicular susceptibilities shows that ferrous iodide presents at low temperature an antiferromagnetic order, with spins oriented along the anisotropy axis (c axis).Phase transitions of Fel2 in a magnetic field parallel to c axis are studied by help of magnetization measurements. At low temperature (2.2 K) saturation is reached only for a magnetic field of 140 kOe. Results obtained in high static fields (Bitter and supraconductive coils allowing respectively 140 and 150 kOe) and in pulsed field are presented.At low temperature, two successive first order phase transitions are observed at 46 and 120 kOe. In the intermediate phase, the magnetization presents two minor discontinuities. An original phase diagram is given.The complexity of the Fel2 behavior, in parallel magnetic field shows that the magnetic structure is not the same as the two sublattices one characteristic of FeCl2 and FeBr2. An estimate of the principal exchange coupling parameters and a study by neutron diffraction measurements (to be published) confirm an original magnetic structure.  相似文献   

9.
The variation of the elastic modulus C33 of terbium has been investigated as a function of temperature in the range 200–230 K, which includes the whole of the antiferromagnetic phase, and as a function of magnetic field applied along the easy magnetic direction, the b axis. Hysteresis in C33 in the antiferromagnetic phase is interpreted in terms of spiral spin domains. The magnetic phase changes are reflected in anomalies in the elastic constant and these are used to produce a magnetic phase diagram of terbium. The final phase diagram has been compared with earlier measurements of magnetisation and magnetostriction.  相似文献   

10.
Thin iron films have been grown on (001) GaAs substrates by low pressure metal organic chemical vapor deposition (LP-MOCVD) at different temperatures with the pressure of 150 Torr. X-ray diffraction (XRD) analysis showed that all films have only one strong diffraction peak (110). The surface of Fe film became smooth with increasing the growth temperature. Magnetization measurements showed that the Fe films grown at different temperatures were ferromagnetic with easy axis parallel to the film surface and hard axis perpendicular to the substrates. The field dependence of magnetization along two axes showed a remarkable difference, implying that the samples have strong magnetic anisotropy. Furthermore, when the applied magnetic field is perpendicular to the Fe surface, a sharp jump in the hysteresis loop could be observed, followed by a broad shoulder, which is related to the interface effect, the existence of carbon and the formation of 180°/90° magnetic domains.  相似文献   

11.
The Mössbauer effect provides a direct method for identifying the spin axis in magnetic crystals and observing magnetic phase transitions. The order of the transition may be inferred from the Mössbauer spectrum. Phase changes can occur as a function of temperature (e.g. when the anisotropy fieldB A changes sign) or as a function of applied magnetic field. In an antiferromagnet a field ?(2B E B A)1/2 along the spin axis whereB E is the exchange field causes the spin-flop transition which is normally first order (sharp) whereas the transition to the paramagnetic phase which occurs at higher fields?2B E is second order (continuous). In quasi-one-dimensional crystals Mössbauer spectra show that the spin-flop transition is first order locally but occurs over a range of fields throughout the crystal, so that the first order character is masked in a conventional magnetization measurement. In fields applied at a finite angle>B A/2B E to the spin axis the transition becomes second order, i.e. a continuous rotation of the spins occurs. In canted antiferromagnets (or weak ferromagnets) the spin-flop transition is also continuous; in addition a “screw” re-orientation may be induced by fields applied perpendicular to the spin axis and arises from antisymmetric exchange. For crystals with lowT N the hyperfine field changes when a magnetic field is applied and has a minimum at a phase transition; this may be used to map out the magnetic phase diagram.  相似文献   

12.
We present the results of a computer experiment devoted to the problem of the interaction of two magnetic solitary spin waves moving in the direction perpendicular to the axis of easy magnetization in an uniaxial ferromagnet. Such waves being particular solutions of the Landau-Lifshitz equations move like a domain wall under the influence of an external magnetic field. Our computer experiment shows that the two solitary spin waves during their interaction, behave as two solitons and thus the concerned Landau-Lifshitz equations allows N-soliton solutions.  相似文献   

13.
The magnetic properties of V5S8 single crystals have been investigated by susceptibility and torque measurements. The susceptibilities parallel and perpendicular to the magnetic easy axis show a remarkable anisotropy below the Neel temperature of 32 K and are nearly Isotropie above that temperature. The easy axis is found to be nearly along the c-axis of the monoclinic lattice, being inclined at an angle of 9.6 ± 1.0° from the c-axis toward the a-axis. The torque curves, measured up to 24.4 kOe at liquid helium temperature, deviate from the usual form of a sine function with increasing magnetic field. The analysis of these torque curves suggests that spin flopping may occur at 43 kOe, a comparatively low critical field. Using these experimental results, a localized d-electron model for a particular site of the vanadium-ion, proposed by previous investigators, is examined.  相似文献   

14.
The magnetic properties of FeNiSm thin films with different thicknesses, different Ta interlayer thicknesses and different numbers of Ta interlayers were investigated. The single layer FeNiSm shows in-plane uniaxial anisotropy at a thickness below critical value, but shows weak perpendicular anisotropy with a stripe domain structure at thickness above the critical value. Experiments indicate that one or more Ta interlayers inserted into thick FeNiSm films with weak perpendicular anisotropy were effective not only in canceling the perpendicular anisotropy, but also in recovering the in-plane uniaxial anisotropy. Blocking of the columnar growth of FeNi grains by the Ta interlayer is considered to be responsible for this spin reorientation phenomenon. Moreover, the magnetization reversal mechanism in FeNiSm films with uniaxial anisotropy can be ascribed to coherent rotation when the applied field is close to the hard axis and to domain-wall unpinning when the applied field is close to the easy axis. The dynamic magnetic properties of FeNiSm films with uniaxial anisotropy were investigated in the frequency range 0.1-5 GHz. The degradation of the soft magnetic properties of magnetic thin films due to the growth of columnar grains can be avoided by insertion of a Ta interlayer.  相似文献   

15.
Strain in the La0.67Ca0.33MnO3 films has been tuned by varying substrate and film thickness, and its effects on magnetic anisotropy are studied based on the measurements of isothermal magnetization. Measuring the strain in the films by the out-of-plane lattice parameter (c), we found a strong dependence of the magnetic anisotropy constant (Ku) on strain. Ku decreases linearly from ∼−1.1×106 erg/cm3 for c=0.763 nm to 1.2×106 erg/cm3 for c=0.776 nm, corresponding to a change from tensile strain to compressive strain. Positive Ku signifies a uniaxial anisotropy with the easy axis perpendicular to the film plane, while negative Ku demonstrates an anisotropy of the easy plane character. Smaller or larger c leads a decrease or increase in Ku, which indicates the presence of other effects in addition to those associated with strain. Three distinctive processes for the magnetization are observed along the hard magnetic axis of the films on (001)SrTiO3, suggesting a possibility of strain relaxation even in ultra-thin films.  相似文献   

16.
We have studied the response of an isolated uniaxial magnetic grain suspended in a liquid to an applied fieldh rotating with frequencyω. In the presence of an applied static field (H?h), at low frequencies (i.e. for fast relaxation), the easy axis followsh, while at high frequencies the behavior is similar to that of a bulk sample. In zero static field, the response of a ferromagnetic grain is more complicated; there exists a critical frequencyω e below which a steady state is reached, with the easy axis followingh. Forω>ω e the mechanical behavior depends crucially on the initial conditions. Finally, a superparamagnetic grain has a (different) critical frequencyω e, below which it reacts similarly to the ferromagnetic particle, while forω>ω e it does not follow steadily the rotating field, but can only oscillate about its initial position.  相似文献   

17.
Motivated by impurity-induced magnetic ordering phenomena in spin-gap materials like TlCuCl3, we develop a mean-field theory for strongly disordered antiferromagnets, designed to capture the broad distribution of coupling constants in the effective model for the impurity degrees of freedom. Based on our results, we argue that in the presence of random magnetic couplings the conventional first-order spin-flop transition of an anisotropic antiferromagnet is split into two transitions at low temperatures, associated with separate order parameters along and perpendicular to the field axis. We demonstrate the existence of either a bicritcal point or a critical endpoint in the temperature–field phase diagram, with the consequence that signatures of the spin flop are more pronounced at elevated temperature.  相似文献   

18.
Raman scattering experiments in paramagnetic uniaxial CeF3 at helium temperature demonstrate a splitting of some degenerate (Eg)-phonon states in an external magnetic field parallel to the crystal axis. A linear splitting is observed in low fields, followed by a field independent (saturation) splitting in high fields. In addition, changes in the Raman scattering efficiencies and a reduction of the line width of phonon transitions are observed with increasing magnetic fields. No such effects are observed for magnetic fields perpendicular to the crystal axis. The splittings of degenerate phonon modes are related to the paramagnetic saturation 〈Sz〉.  相似文献   

19.
We show how the partition function of a network of parallel superconducting wires weakly coupled together by the proximity effect, subjected to a vector potential along the wires, can be mapped onto N-distinguishable two dimensional quantum-mechanics problem with a perpendicular imaginary magnetic field. Then, we show, using a mean field approximation, that, for a given coupling, there is a critical temperature for onset of inter-wire phase coherence. The transition temperature Tc is plotted on both cases for non-magnetic and a magnetic field perpendicular to the wires.  相似文献   

20.
In this work, we have investigated the low temperature magnetic phase diagram of the tetragonal NdRhIn5 and Nd2RhIn8 single crystals by means of temperature and field dependent heat capacity and magnetic susceptibility measurements. These compounds order antiferromagnetically with a Néel temperature (TN) of 11 and 10.7 K for NdRhIn5 and Nd2RhIn8, respectively. The constructed magnetic phase of both compounds are anisotropic and show, as expected, a decrease of TN as a function of the magnetic field for c crystallographic direction. However when the magnetic field is applied along of the c-axis, which is the magnetic easy axis, first-order-like field induced transitions are observed within the antiferromagnetic state. We compare the phase diagrams obtained for NdRhIn5 and Nd2RhIn8 with those for their cubic relative NdIn3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号