首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of surface core-level shift (SCLS) of Pd thin films on Pt (111) substrate is investigated. At submonolayer coverage of Pd thin films, the splitting of Pd 3d core-level peaks indicate the contribution of both initial and final states of photoionization processes while no change on valence band (VB) spectra is found. When the coverage of Pd reaches to single monolayer, the final-state relaxation effect on the Pd 3d vanishes and only the initial-state effect, a negative SCLS, is present. Also, the VB spectrum at Pd monolayer films shows a clear band narrowing, that is, the origin of the negative SCLS at monolayer coverage. As the Pd coverage is increased to more than monolayer thickness, the Pd 3d peaks start to show the surface layer contribution from second and third layers and the VB spectra show even narrower bandwidth, possibly due to the formation of surface states and strained effect of Pd adlayers on top of the first pseudomorphic layer.  相似文献   

2.
The stability of PdRu/Ru(0001) and PtRu/Ru(0001) surface alloys and the tendency for surface segregation of Pd and Pt subsurface guest metals in these surface alloys is studied by scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). Atomic resolution STM imaging and AES measurements reveal that upon overgrowing the surface alloys with a 1–2 monolayer Ru film and subsequent annealing to the temperatures required for initial surface alloy formation, the Ru‐covered Pd (Pt) atoms float back to the outermost layer. The lateral distribution of these species is also essentially identical to that of the initial surface alloys, before overgrowth by Ru. In combination, this clearly demonstrates that the surface alloys represent stable surface configurations, metastable only towards entropically favored bulk dissolution, and that there is a distinct driving force for surface segregation of these species. Consequences of these data on the mechanism for surface alloy formation are discussed.  相似文献   

3.
The adsorption properties of structurally well defined bimetallic Pt/Ru(0001) surfaces, consisting of a Ru(0001) substrate partly or fully covered by monolayer Pt islands or a monolayer Pt film, were studied by temperature programmed desorption (TPD) using CO and deuterium as probe molecules. Additionally, the adsorption of CO was investigated by infrared reflection absorption spectroscopy (IRAS). The presence of the pseudomorphic platinum islands or monolayer film leads to considerable modifications of the adsorption properties for both adsorbates, both on the Pt covered and, to a smaller extent, on the bare Ru part of the surfaces. In addition to distinct weakly bound adspecies, which are adsorbed on the monolayer Pt islands, we find unique contributions from island edge desorption, from spill-over processes during the desorption run, and a general down-shift of the peak related to desorption from Pt-free Ru(0001) areas with increasing Pt coverage. These effects, which we consider as characteristic for adsorption on bimetallic surfaces with large contiguous areas of the respective types, are discussed in detail.  相似文献   

4.
The growth of crystalline ice films on Pt(111) and Pd(111) is investigated using temperature programed desorption of the water films and of rare gases adsorbed on the water films. The water monolayer wets both Pt(111) and Pd(111) at all temperatures investigated [e.g., 20-155 K for Pt(111)]. However, crystalline ice films grown at higher temperatures (e.g., T>135 K) do not wet the monolayer. Similar results are obtained for crystalline ice films of D2O and H2O. Amorphous water films, which initially wet the surface, crystallize and dewet, exposing the water monolayer when they are annealed at higher temperatures. Thinner films crystallize and dewet at lower temperatures than thicker films. For samples sputtered with energetic Xe atoms to prepare ice crystallites surrounded by bare Pt(111), subsequent annealing of the films causes water molecules to diffuse off the ice crystallites to reform the water monolayer. A simple model suggests that, for crystalline films grown at high temperatures, the ice crystallites are initially widely separated with typical distances between crystallites of approximately 14 nm or more. The experimental results are consistent with recent theory and experiments suggesting that the molecules in the water monolayer form a surface with no dangling OH bonds or lone pair electrons, giving rise to a hydrophobic water monolayer on both Pt(111) and Pd(111).  相似文献   

5.
Chemical properties of epitaxially grown bimetallic layers may deviate substantially from the behavior of their constituents. Strain in conjunction with electronic effects due to the nearby interface represent the dominant contribution to this modification. One of the simplest surface processes to characterize reactivity of these substrates is the dissociative adsorption of an incoming homo-nuclear diatomic molecule. In this study, the adsorption of O(2) on various epitaxially grown Pt films on Ru(0001) has been investigated using infrared absorption spectroscopy and thermal desorption spectroscopy. Pt/Ru(0001) has been chosen as a model system to analyze the individual influences of lateral strain and of the residual substrate interaction on the energetics of a dissociative adsorption system. It is found that adsorption and dissociative sticking depends dramatically on Pt film thickness. Even though oxygen adsorption proceeds in a straightforward manner on Pt(111) and Ru(0001), molecular chemisorption of oxygen on Pt/Ru(0001) is entirely suppressed for the Pt/Ru(0001) monolayer. For two Pt layers chemisorbed molecular oxygen on Pt terraces is produced, albeit at a very slow rate; however, no (thermally induced) dissociation occurs. Only for Pt layer thicknesses N(Pt) ≥ 3 sticking gradually speeds up and annealing leads to dissociation of O(2), thereby approaching the behavior for oxygen adsorption on genuine Pt(111). For Pt monolayer films a novel state of chemisorbed O(2), most likely located at step edges of Pt monolayer islands is identified. This state is readily populated which precludes an activation barrier towards adsorption, in contrast to adsorption on terrace sites of the Pt/Ru(0001) monolayer.  相似文献   

6.
The mechanisms of electrochemical oxide film formation at noble metals are described and exemplified by the cases of Pt and Au, especially in the light of recent experimentation by means of cyclic voltammetry, ellipsometry and vacuum surface-science studies using LEED and AES.

Unlike the mechanisms of base-metal oxidation, e.g., in corrosion processes, anodic oxide film formation at noble metals proceeds by surface chemical processes involving, initially, sub-monolayer, through monolayer, formation of 2-dimensional OH/O arrays. During such 2-d processes, place-exchange between electrosorbed OH or O species on the surface, and Pt or Au atoms within the surface lattice, takes place leading to a quasi-2-d compact film which then grows ultimately to a multilayer hydrous oxide film, probably by continuing injection of ions of the substrate metal and their migration through the growing film under the influence of the field.

The initial, sub-monolayer stage of electrosorption of OH involves competitive chemisorption by anions, e.g. HSO4, ClO4, Cl, which inhibits onset of the first stage of surface oxidation. These processes are demonstrable in experiments on single-crystal surfaces. The combination of such anion effects with place-exchange during the extension of the film, leads to a general mechanism of noble metal oxide film formation.

The formation of the oxide films can be examined in detail by recording the distinguishable stages in the film's electrochemical reduction in linear-sweep voltammetry which is sensitive down to OH/O fractional coverages as low as 0.5% and over time-scales down to 50μs in experiments on time-evolution and transformation of the states of the oxide films.

By means of LEED, AES and STM or AFM experiments, the reconstructions and perturbations (e.g. generation of stepped terraces) which oxide films cause on singlecrystal surfaces can be followed.  相似文献   


7.
Thin metal films with a thickness of one or over one monolayer formed on quasicrystalline surfaces were studied using reflection high-energy electron diffraction, X-ray photoelectron spectroscopy, X-ray photoelectron diffraction and scanning tunneling microscopy. The substrates were the 10f surface of d-Al–Ni–Co and the 5f surface of i-Al–Pd–Mn. The metals deposited were Au, Pt, Ag and In. None of these metals forms any ordered layer by deposition onto clean quasicrystalline surfaces. However, if a submonolayer of In is present atop the 10f surface, an epitaxial layer of multiply-twinned AuAl2 crystals is formed by Au deposition and subsequent annealing. This is also the case for Pt deposition, but not for Ag deposition. Although the surfactant effect of In is also observed in the case of Au deposition on the 5f surface of i-Al–Pd–Mn, the ordered layer formed is a film of Au–Al alloy with icosahedral symmetry. No ordered films are formed by Pt or Ag deposition onto the 5f surface, regardless of the presence of an In-precovered layer. A Sn film monolayer induced by surface diffusion was also studied.  相似文献   

8.
The growth of epitaxial ultrathin BaTiO(3) films on a Pt(100) substrate has been studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and x-ray photoelectron spectroscopy (XPS). The films have been prepared by radio-frequency-assisted magnetron sputter deposition at room temperature and develop a long-range order upon annealing at 900 K in O(2). By adjusting the Ar and O(2) partial pressures of the sputter gas, the stoichiometry was tuned to match that of a BaTiO(3)(100) single crystal as determined by XPS. STM reveals the growth of continuous BaTiO(3) films with unit cell high islands on top. With LEED already for monolayer thicknesses, the formation of a BaTiO(3)(100)-(1 × 1) structure has been observed. Films of 2-3 unit cell thickness show a brilliant (1 × 1) LEED pattern for which an extended set of LEED I-V data has been acquired. At temperatures above 1050 K the BaTiO(3) thin film starts to decay by formation of vacancy islands. In addition (4 × 4) and (3 × 3) surface reconstructions develop upon prolonged heating.  相似文献   

9.
Adsorption of ethylene oxide, CH(2)CH(2)O (EtO), on a Au(211) stepped surface was studied by temperature programmed desorption (TPD) and Fourier transform infrared reflection-absorption spectroscopy (FT-IRAS). Ethylene oxide was completely reversibly adsorbed, and desorbed molecularly during TPD following adsorption on Au(211) at 85 K. EtO TPD peaks appeared at 115 K from the multilayer film and 140 and 170 K from the monolayer. Desorption at 140 K was attributed to EtO desorption from terrace sites, and that at 170 K to EtO desorption from step sites. Desorption activation energies and corresponding adsorption energies were estimated to be 8.4 and 10.3 kcal mol(-1), respectively. The EtO ring (C(2)O) deformation band appeared in IRAS at 865 cm(-1) for EtO in multilayer films and when adsorbed in the monolayer at terrace sites. The stronger chemisorption bonding of EtO at Au step sites slightly weakens the bonding within the molecule and causes a small red-shift of this band to 850 cm(-1) for adsorption at step sites. EtO presumably binds via the oxygen atom to the surface, and observation of the EtO-ring absorption band in IRAS establishes that the molecular ring plane of EtO adsorbed at step and terrace sites is nearly upright with respect to the crystal surface plane.  相似文献   

10.
Ultrahigh vacuum (UHV) surface science techniques are used to study the heterogeneous catalytic dehydrogenation of a liquid organic hydrogen carrier in its liquid state close to the conditions of real catalysis. For this purpose, perhydrocarbazole (PH), otherwise volatile under UHV, is covalently linked as functional group to an imidazolium cation, forming a non‐volatile ionic liquid (IL). The catalysed dehydrogenation of the PH unit as a function of temperature is investigated for a Pt foil covered by a macroscopically thick PH‐IL film and for Pd particles suspended in the PH‐IL film, and for PH‐IL on Au as inert support. X‐ray photoelectron spectroscopy and thermal desorption spectroscopy allows us to follow in situ the catalysed transition of perhydrocarbazole to carbazole at technical reaction temperatures. The data demonstrate the crucial role of the Pt and Pd catalysts in order to shift the dehydrogenation temperature below the critical temperature of thermal decomposition.  相似文献   

11.
以碱-水热法在金属Ti片上原位生长了TiO2纳米结构(纳米花和纳米线)薄膜,并采用低温静电自组装方法将超细贵金属(金、铂、钯)纳米颗粒均匀沉积于多孔TiO2薄膜上.负载于Ti片上的贵金属/TiO2纳米结构薄膜具有一体化结构、多孔架构和高光催化活性.超高分辨率场发射扫描电子显微镜(FESEM)直接观察表明贵金属纳米颗粒在TiO2表面分布均匀,且颗粒之间相互分离,金、铂、钯纳米颗粒的平均粒径分别约为4.0、2.0和10.0nm.俄歇电子能谱(AES)纵深成分分析表明贵金属不仅沉积于薄膜表面,且大量分布于TiO2纳米结构薄膜内部,其深度超过580 nm.X射线光电子能谱(XPS)分析表明,经300°C下在空气中热处理后,纳米金仍保持金属态,纳米铂部分被氧化成PtOabs,而钯粒子则完全被氧化成氧化钯(PdO).以低温静电自组装法沉积贵金属,贵金属负载量可通过调节组装时间与溶胶pH值来控制.光催化降解甲基橙的结果表明,沉积的纳米金和铂能显著增加TiO2纳米结构薄膜的光催化活性,说明金和铂粒子可促进光生载流子的分离;但负载的PdO对TiO2薄膜的光催化性能增强几乎无作用.  相似文献   

12.
The electronic and chemical (adsorption) properties of bimetallic Ag/Pt(111) surfaces and their modification upon surface alloy formation, that is, during intermixing of Ag and Pt atoms in the top atomic layer upon annealing, were studied by X‐ray photoelectron spectroscopy (XPS) and, using CO as probe molecule, by temperature‐programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), respectively. The surface alloys are prepared by deposition of sub‐monolayer Ag amounts on a Pt(111) surface at room temperature, leading to extended Ag monolayer islands on the substrate, and subsequent annealing of these surfaces. Surface alloy formation starts at ≈600–650 K, which is evidenced by core‐level shifts (CLSs) of the Ag(3d5/2) signal. A distinct change of the CO adsorption properties is observed when going to the intermixed PtAg surface alloys. Most prominently, we find the growth of a new desorption feature at higher temperature (≈550 K) in the TPD spectra upon surface alloy formation. This goes along with a shift of the COad‐related IR bands to lower wave number. Surface alloy formation is almost completed after heating to 700 K.  相似文献   

13.
The model catalysts of ZrO(2)-supported Au nanoparticles have been prepared by deposition of Au atoms onto the surfaces of thin ZrO(2) films with different morphologies. The adsorption and thermal stability of Au nanoparticles on thin ZrO(2) films have been investigated using synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The thin ZrO(2) films were prepared by two different methods, giving rise to different morphologies. The first method utilized wet chemical impregnation to synthesize the thin ZrO(2) film through the procedure of first spin-coating a zirconium ethoxide (Zr(OC(2)H(5))(4)) precursor onto a SiO(2)/Si(100) substrate at room temperature followed by calcination at 773 K for 12 h. Scanning electron microscopy (SEM) investigations indicate that highly porous "sponge-like nanostructures" were obtained in this case. The second method was epitaxial growth of a ZrO(2)(111) film through vacuum evaporation of Zr metal onto Pt(111) in 1 × 10(-6) Torr of oxygen at 550 K followed by annealing at 1000 K. The structural analysis with low energy electron diffraction (LEED) of this film exhibits good long-range ordering. It has been found that Au forms smaller particles on the porous ZrO(2) film as compared to those on the ordered ZrO(2)(111) film at a given coverage. Thermal annealing experiments demonstrate that Au particles are more thermally stable on the porous ZrO(2) surface than on the ZrO(2)(111) surface, although on both surfaces, Au particles experience significant sintering at elevated temperatures. In addition, by annealing the surfaces to 1100 K, Au particles desorb completely from ZrO(2)(111) but not from porous ZrO(2). The enhanced thermal stability for Au on porous ZrO(2) can be attributed to the stronger interaction of the adsorbed Au with the defects and the hindered migration or coalescence resulting from the porous structures.  相似文献   

14.
Bimetallic Pd-Au and Pt-Au and monometallic Pd, Pt, and Au films were prepared by physical vapor deposition. The resulting surfaces were characterized by means of XPS, AFM, and CO adsorption from the liquid phase (CH2Cl2) monitored by ATR-IR spectroscopy. CO adsorption combined with ATR-IR proved to be a very sensitive method for probing the degree of interdiffusion occurring at the interfaces whose properties were altered by variation of the Pd and Pt film thickness from 0.2 to 2 nm. Because no CO adsorption was observed on Au, the evaporation of Pt-group metals on Au allowed us to study the effect of dilution on the adsorption properties of the surfaces. At equivalent Pd film thickness, the evaporation of Au reduced the amount of adsorbed CO and caused the formation of 2-fold bridging CO, which was almost absent in monometallic surfaces. Additionally, the average particle size on Pd-Au surfaces was smaller than that on monometallic Pd surfaces. The results indicate that a Pd/Au diffuse interface is formed that affects the Pd particle size even more drastically than the simple decrease in Pd film thickness in monometallic surfaces. Pt-Au surfaces were less sensitive to CO adsorption, indicating that the two metals do not mix to a significant extent. The difference in the interfacial behavior of Pd and Pt in the bimetallic gold films is traced to the largely different Pd-Au and Pt-Au miscibility gaps.  相似文献   

15.
Cosegregation phenomena were studied on the (110) and (111) surfaces of Fe-3.5%Mo-N single crystals by means of Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). On both surface orientations cosegregation of molybdenum and nitrogen was found to cause the formation of two-dimensional MoN surface compounds which are stabilized by strong chemical interactions between the two solutes. The maximum surface coverages of the segregants, which were established at temperatures around 500°C, correspond to less than a full monolayer of the MoN surface compounds. LEED investigations revealed a complex diffraction pattern of the MoN covered (110) alloy surface, while a (1 × 1) structure was observed on the (111) surface. However, no facetting of either surfaces occurred. This finding is in sharp contrast to previous results obtained for ferritic alloys with various 3d metals such as Fe-15%Cr-N and Fe-3%V-C,N. It is concluded that the maximum MoN surface coverage is too small to induce the facetting of the bcc(110) and bcc(111) alloy surfaces.  相似文献   

16.
The role of Au additives in SnO(2)-based thick film gas sensors was investigated by a combination of operando investigation techniques, namely spectroscopic high energy resolved fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) and simultaneous DC resistance and work function change measurements. The results have shown that the Au is present in the form of small metallic particles at the surface of the host metal oxide without changing its bulk or surface electronic properties. The sensitization effect of Au can therefore be attributed to the "spill-over effect", meaning that the Au particles enrich the surface of the active metal oxide with oxygen species which consequently react with reducing gases such as CO and H(2). This is in contrast to the effect of Pd and Pt promoters which were found to be distributed at an atomic level on the surface and in the bulk of the supporting sensing material and therefore have a tremendous effect on its bulk and surface electronic properties.  相似文献   

17.
Periodically stepped NiO(100) surfaces were prepared and characterized with low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). Two vicinal NiO(100) single-crystal samples were cut, oriented, and polished with regular, repeating monatomic steps in six-atom or seven-atom terrace widths. LEED diffraction patterns showed characteristic spot-splitting that corresponded to the appropriate terrace and step height. The nonstepped and stepped NiO(100) surfaces were exposed to bromobenzene at 130 K first to produce a molecularly adsorbed monolayer species and then, with increased exposure, a multilayer adsorbate. An additional adsorbate species, observed only on the stepped surfaces, was found to desorb at 145 K by two competing pathways. One pathway, which saturates at low coverages, leaves bromine behind on the substrate and results in dehalogenation. The other pathway yields molecular desorption at 145 K, but is only observed in detectable amounts after the dehalogenation pathway is saturated. On both stepped and nonstepped NiO(100) substrates, adsorbed bromine resulting from dehalogenation processes appears as nickel bromide, determined by the Br 3p XPS data.  相似文献   

18.
The surface chemistry of vinyltrimethylsilane (VTMS) on Si(100)-2x1 has been investigated using multiple internal reflection-Fourier transform infrared spectroscopy, Auger electron spectroscopy, and thermal desorption mass spectrometry. Molecular adsorption of VTMS at submonolayer coverages is dominating at cryogenic temperatures (100 K). Upon adsorption at room temperature, chemical reaction involving rehybridization of the double bond in VTMS occurs. Further annealing induces several reactions: molecular desorption from a monolayer by 400 K, formation and desorption of propylene by 500 K, decomposition leading to the release of silicon-containing products around 800 K, and, finally, surface decomposition leading to the production of silicon carbide and the release of hydrogen as H(2) at 800 K. This chemistry is markedly different from the previously reported behavior of VTMS on Si(111)-7x7 surfaces resulting in 100% conversion to silicon carbide. Thus, some information about the surface intermediates of the VTMS reaction with silicon surfaces can be deduced.  相似文献   

19.
The self-assembly of a nickel-porphyrin derivative (Ni-DPPyP) containing two pyridyl coordinating sites and two pentyl chains at trans meso positions was studied with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) on Au(111). Deposition of Ni-DPPyP onto Au(111) gave rise to a close-packed network for coverages smaller or equal to one monolayer as revealed by STM and LEED. The molecular arrangement of this two-dimensional network is stabilized via hydrogen bonds formed between the pyridyl's nitrogen and hydrogen atoms from the pyrrole groups of neighboring molecules. Subsequent deposition of cobalt atoms onto the close-packed network and post-deposition annealing at 423 K led to the formation of a Co-coordinated hexagonal porous network. As confirmed by XPS measurements, the porous network is stabilized by metal-ligand interactions between one cobalt atom and three pyridyl ligands, each pyridyl ligand coming from a different Ni-DPPyP molecule.  相似文献   

20.
We have used primarily temperature-programmed desorption (TPD) and infrared reflection-absorption spectroscopy (IRAS) to investigate CO adsorption on a Au(211) stepped single-crystal surface. The Au(211) surface can be described as a step-terrace structure consisting of three-atom-wide terraces of (111) orientation and a monatomic step with a (100) orientation, or 3(111) x (100) in microfacet notation. CO was only weakly adsorbed but was more strongly bound at step sites (12 kcal mol(-1)) than at terrace sites (6.5-9 kcal mol(-1)). The sticking coefficient of CO on the Au(211) surface was also higher ( approximately 5x) during occupation of step sites compared to populating terrace sites at higher coverages. The nu(CO) stretching band energy in IRAS spectra indicated that CO was adsorbed at atop sites at all coverages and conditions. A small red shift of nu(CO) from 2126 to 2112 cm(-1) occurred with increasing CO coverage on the surface. We conclude that the presence of these particular step sites at the Au(211) surface imparts stronger CO bonding and a higher reactivity than on the flat Au(111) surface, but these changes are not remarkable compared to chemistry on other more reactive crystal planes or other stepped Au surfaces. Thus, it is unlikely that the presence or absence of this particular crystal plane alone at the surface of supported Au nanoparticles has much to do with the remarkable properties of highly active Au catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号