首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We give an overview of results on amorphic association schemes. We give the known constructions of such association schemes, and enumerate most such association schemes on up to 49 vertices. Special attention is paid to cyclotomic association schemes. We give several results on when a strongly regular decomposition of the complete graph is an amorphic association scheme. This includes a new proof of the result that a decomposition of the complete graph into three strongly regular graphs is an amorphic association scheme, and the new result that a strongly regular decomposition of the complete graph for which the union of any two relations is again strongly regular must be an amorphic association scheme.  相似文献   

2.
A canonical basis of Rn associated with a graph G on n vertices has been defined in [15] in connection with eigenspaces and star partitions of G. The canonical star basis together with eigenvalues of G determines G to an isomorphism. We study algorithms for finding the canonical basis and some of its variations. The emphasis is on the following three special cases; graphs with distinct eigenvalues, graphs with bounded eigenvalue multiplicities and strongly regular graphs. We show that the procedure is reduced in some parts to special cases of some well known combinatorial optimization problems, such as the maximal matching problem. the minimal cut problem, the maximal clique problem etc. This technique provides another proof of a result of L. Babai et al. [2] that isomorphism testing for graphs with bounded eigenvalue multiplicities can be performend in a polynomial time. We show that the canonical basis in strongly regular graphs is related to the graph decomposition into two strongly regular induced subgraphs. Examples of distinguishing between cospectral strongly regular graphs by means of the canonical basis are provided. The behaviour of star partitions of regular graphs under operations of complementation and switching is studied.  相似文献   

3.
The concept of a strong difference family formally introduced in Buratti [J Combin Designs 7 (1999), 406–425] with the aim of getting group divisible designs with an automorphism group acting regularly on the points, is here extended for getting, more generally, sharply‐vertex‐transitive Γ‐decompositions of a complete multipartite graph for several kinds of graphs Γ. We show, for instance, that if Γ has e edges, then it is often possible to get a sharply‐vertex‐transitive Γ‐decomposition of Km × e for any integer m whose prime factors are not smaller than the chromatic number of Γ. This is proved to be true whenever Γ admits an α‐labeling and, also, when Γ is an odd cycle or the Petersen graph or the prism T5 or the wheel W6. We also show that sometimes strong difference families lead to regular Γ‐decompositions of a complete graph. We construct, for instance, a regular cube‐decomposition of K16m for any integer m whose prime factors are all congruent to 1 modulo 6. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 443–461, 2008  相似文献   

4.
一个图G的路分解是指一路集合使得G的每条边恰好出现在其中一条路上.记Pl长度为l-1的路,如果G能够分解成若干个Pl,则称G存在{Pl}—分解.关于图的给定长路分解问题主要结果有:(i)连通图G存在{P3}—分解当且仅当G有偶数条边(见[1]);(ii)连通图G存在{P3,P4}—分解当且仅当G不是C3和奇树,这里C3的长度为3的圈而奇树是所有顶点皆度数为奇数的树(见[3]).本文讨论了3正则图的{P4}—分解情况,并构造证明了边数为3k(k热∈Z且k≥2)的完全图Kn和完全二部图Kr,s存在{P4}—分解.  相似文献   

5.
Motivated by the construction of invariants of links in 3-space, we study spin models on graphs for which all edge weights (considered as matrices) belong to the Bose-Mesner algebra of some association scheme. We show that for series-parallel graphs the computation of the partition function can be performed by using series-parallel reductions of the graph appropriately coupled with operations in the Bose-Mesner algebra. Then we extend this approach to all plane graphs by introducing star-triangle transformations and restricting our attention to a special class of Bose-Mesner algebras which we call exactly triply regular. We also introduce the following two properties for Bose-Mesner algebras. The planar duality property (defined in the self-dual case) expresses the partition function for any plane graph in terms of the partition function for its dual graph, and the planar reversibility property asserts that the partition function for any plane graph is equal to the partition function for the oppositely oriented graph. Both properties hold for any Bose-Mesner algebra if one considers only series-parallel graphs instead of arbitrary plane graphs. We relate these notions to spin models for link invariants, and among other results we show that the Abelian group Bose-Mesner algebras have the planar duality property and that for self-dual Bose-Mesner algebras, planar duality implies planar reversibility. We also prove that for exactly triply regular Bose-Mesner algebras, to check one of the above properties it is sufficient to check it on the complete graph on four vertices. A number of applications, examples and open problems are discussed.  相似文献   

6.
Kotzig asked in 1979 what are necessary and sufficient conditions for a d‐regular simple graph to admit a decomposition into paths of length d for odd d>3. For cubic graphs, the existence of a 1‐factor is both necessary and sufficient. Even more, each 1‐factor is extendable to a decomposition of the graph into paths of length 3 where the middle edges of the paths coincide with the 1‐factor. We conjecture that existence of a 1‐factor is indeed a sufficient condition for Kotzig's problem. For general odd regular graphs, most 1‐factors appear to be extendable and we show that for the family of simple 5‐regular graphs with no cycles of length 4, all 1‐factors are extendable. However, for d>3 we found infinite families of d‐regular simple graphs with non‐extendable 1‐factors. Few authors have studied the decompositions of general regular graphs. We present examples and open problems; in particular, we conjecture that in planar 5‐regular graphs all 1‐factors are extendable. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 114–128, 2010  相似文献   

7.
We study spin models for invariants of links as defined by Jones [22]. We consider the two algebras generated by the weight matrices of such models under ordinary or Hadamard product and establish an isomorphism between them. When these algebras coincide they form the Bose-Mesner algebra of a formally self-dual association scheme. We study the special case of strongly regular graphs, which is associated to a particularly interesting link invariant, the Kauffman polynomial [27]. This leads to a classification of spin models for the Kauffman polynomial in terms of formally self-dual strongly regular graphs with strongly regular subconstituents [7]. In particular we obtain a new model based on the Higman-Sims graph [17].  相似文献   

8.
《Discrete Mathematics》2022,345(10):113012
An even cycle decomposition of a graph is a partition of its edges into even cycles. Markström constructed infinitely many 2-connected 4-regular graphs without even cycle decompositions. Má?ajová and Mazák then constructed an infinite family of 3-connected 4-regular graphs without even cycle decompositions. In this note, we further show that there exists an infinite family of 4-connected 4-regular graphs without even cycle decompositions.  相似文献   

9.
In this paper, we study a conjecture of Andries E. Brouwer from 1996 regarding the minimum number of vertices of a strongly regular graph whose removal disconnects the graph into non-singleton components.We show that strongly regular graphs constructed from copolar spaces and from the more general spaces called Δ-spaces are counterexamples to Brouwer?s Conjecture. Using J.I. Hall?s characterization of finite reduced copolar spaces, we find that the triangular graphs T(m), the symplectic graphs Sp(2r,q) over the field Fq (for any q prime power), and the strongly regular graphs constructed from the hyperbolic quadrics O+(2r,2) and from the elliptic quadrics O(2r,2) over the field F2, respectively, are counterexamples to Brouwer?s Conjecture. For each of these graphs, we determine precisely the minimum number of vertices whose removal disconnects the graph into non-singleton components. While we are not aware of an analogue of Hall?s characterization theorem for Δ-spaces, we show that complements of the point graphs of certain finite generalized quadrangles are point graphs of Δ-spaces and thus, yield other counterexamples to Brouwer?s Conjecture.We prove that Brouwer?s Conjecture is true for many families of strongly regular graphs including the conference graphs, the generalized quadrangles GQ(q,q) graphs, the lattice graphs, the Latin square graphs, the strongly regular graphs with smallest eigenvalue −2 (except the triangular graphs) and the primitive strongly regular graphs with at most 30 vertices except for few cases.We leave as an open problem determining the best general lower bound for the minimum size of a disconnecting set of vertices of a strongly regular graph, whose removal disconnects the graph into non-singleton components.  相似文献   

10.
A proper edge-coloring of a graph G is an assignment of colors to the edges of G such that adjacent edges receive distinct colors. A proper edge-coloring defines at each vertex the set of colors of its incident edges. Following the terminology introduced by Horňák, Kalinowski, Meszka and Wo?niak, we call such a set of colors the palette of the vertex. What is the minimum number of distinct palettes taken over all proper edge-colorings of G? A complete answer is known for complete graphs and cubic graphs. We study in some detail the problem for 4-regular graphs. In particular, we show that certain values of the palette index imply the existence of an even cycle decomposition of size 3 (a partition of the edge-set of a graph into 3 2-regular subgraphs whose connected components are cycles of even length). This result can be extended to 4d-regular graphs. Moreover, in studying the palette index of a 4-regular graph, the following problem arises: does there exist a 4-regular graph whose even cycle decompositions cannot have size smaller than 4?  相似文献   

11.
A graph Γ is called a Deza graph if it is regular and the number of common neighbors of any two distinct vertices is one of two fixed values. A Deza graph is called a strictly Deza graph if it has diameter 2 and is not strongly regular. In 1992, Gardiner et al. proved that a strongly regular graph that contains a vertex with disconnected second neighborhood is a complete multipartite graph with parts of the same size greater than 2. In this paper, we study strictly Deza graphs with disconnected second neighborhoods of vertices. In Section 2, we prove that, if each vertex of a strictly Deza graph has disconnected second neighborhood, then the graph is either edge-regular or coedge-regular. In Sections 3 and 4, we consider strictly Deza graphs that contain at least one vertex with disconnected second neighborhood. In Section 3, we show that, if such a graph is edge-regular, then it is the s-coclique extension of a strongly regular graph with parameters (n, k, λ, μ), where s is an integer, s ≥ 2, and λ = μ. In Section 4, we show that, if such a graph is coedge-regular, then it is the 2-clique extension of a complete multipartite graph with parts of the same size greater than or equal to 3.  相似文献   

12.
In this article, we introduce the algebra of block-symmetric cylinders and we show that symmetric cylindrical constructions on base-graphs admitting commutative decompositions behave as generalized tensor products. We compute the characteristic polynomial of such symmetric cylindrical constructions in terms of the spectra of the base-graph and the cylinders in a general setting. This gives rise to a simultaneous generalization of some well-known results on the spectra of a variety of graph amalgams, as various graph products, graph subdivisions and generalized Petersen graph constructions. While our main result introduces a connection between spectral graph theory and commutative decompositions of graphs, we focus on commutative cyclic decompositions of complete graphs and tree-cylinders along with a subtle group labeling of trees to introduce a class of highly symmetric graphs containing the Petersen and the Coxeter graphs. Also, using techniques based on recursive polynomials we compute the characteristic polynomials of these highly symmetric graphs as an application of our main result.  相似文献   

13.
A transitive decomposition of a graph is a partition of the edge or arc set giving a set of subgraphs which are preserved and permuted transitively by a group of automorphisms of the graph. This paper deals with transitive decompositions of complete multipartite graphs preserved by an imprimitive rank 3 permutation group. We obtain a near-complete classification of these when the group in question has an almost simple component.  相似文献   

14.
For p an odd prime, let \({{\mathcal A}_{p}}\) be the complete classical affine association scheme whose associate classes correspond to parallel classes of lines in the classical affine plane AG(2, p). It is known that \({{\mathcal A}_{p}}\) is an amorphic association scheme. We investigate rank 3 fusion schemes of \({{\mathcal A}_{p}}\) whose basis graphs have the same parameters as the Paley graphs \({P(p^{2})}\). In contrast to the Paley graphs, the great majority of graphs we detect are non-self-complementary and non-Schurian. In particular, existence of non-self-complementary graphs with Paley parameters is established for \({p \ge 17}\), with an analogous existence result for non-Schurian such graphs when \({p \ge 11}\). We demonstrate that the number of self-complementary and non-self-complementary strongly regular graphs with Paley parameters grows rapidly as \({p \to \infty}\).  相似文献   

15.
In this article, we introduce a new technique for obtaining cycle decompositions of complete equipartite graphs from cycle decompositions of related multigraphs. We use this technique to prove that if n, m and λ are positive integers with n ≥ 3, λ≥ 3 and n and λ both odd, then the complete equipartite graph having n parts of size m admits a decomposition into cycles of length λ2 whenever nm ≥ λ2 and λ divides m. As a corollary, we obtain necessary and sufficient conditions for the decomposition of any complete equipartite graph into cycles of length p2, where p is prime. © 2010 Wiley Periodicals, Inc. J Combin Designs 18:401‐414, 2010  相似文献   

16.
In this paper, we begin the determination of all primitive strongly regular graphs with chromatic number equal to 5. Using eigenvalue techniques, we show that there are at most 43 possible parameter sets for such a graph. For each parameter set, we must decide which strongly regular graphs, if any, possessing the set are 5-chromatic. In this way, we deal completely with 34 of these parameter sets using eigenvalue techniques and computer enumerations.  相似文献   

17.
《Discrete Mathematics》2020,343(7):111904
An even cycle decomposition of a graph is a partition of its edges into cycles of even length. In 2012, Markström conjectured that the line graph of every 2-connected cubic graph has an even cycle decomposition and proved this conjecture for cubic graphs with oddness at most 2. However, for 2-connected cubic graphs with oddness 2, Markström only considered these graphs with a chordless 2-factor. (A chordless 2-factor of a graph is a 2-factor consisting of only induced cycles.) In this paper, we first construct an infinite family of 2-connected cubic graphs with oddness 2 and without chordless 2-factors. We then give a complete proof of Markström’s result and further prove this conjecture for cubic graphs with oddness 4.  相似文献   

18.
We study connectivity, Hamilton path and Hamilton cycle decomposition, 4-edge and 3-vertex coloring for geometric graphs arising from pseudoline (affine or projective) and pseudocircle (spherical) arrangements. While arrangements as geometric objects are well studied in discrete and computational geometry, their graph theoretical properties seem to have received little attention so far. In this paper we show that they provide well-structured examples of families of planar and projective-planar graphs with very interesting properties. Most prominently, spherical arrangements admit decompositions into two Hamilton cycles; this is a new addition to the relatively few families of 4-regular graphs that are known to have Hamiltonian decompositions. Other classes of arrangements have interesting properties as well: 4-connectivity, 3-vertex coloring or Hamilton paths and cycles. We show a number of negative results as well: there are projective arrangements which cannot be 3-vertex colored. A number of conjectures and open questions accompany our results.  相似文献   

19.
20.
We investigate transitive decompositions of disconnected graphs, and show that these behave very differently from a related class of algebraic graph decompositions, known as homogeneous factorisations. We conclude that although the study of homogeneous factorisations admits a natural reduction to those cases where the graph is connected, the study of transitive decompositions does not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号