首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
Laccases from fungal origin are typically unstable at high temperatures and alkaline conditions. This characteristic limits their practical applications. In this study, a new bacterial strain exhibiting laccase activity was isolated from raw fennel honey samples and identified as Bacillus subtilis X1. The CotA-laccase gene was cloned from strain X1 and efficiently expressed in Escherichia coli in a biologically active form. The purified recombinant laccase demonstrated an extensive pH range for catalyzing substrates and high stability toward alkaline pH and high temperatures. No loss of laccase activity was observed at pH 9.0 after 10 days of incubation, and approximately 21 % of the initial activity was detected after 10 h at 80 °C. Two anthraquinonic dyes (reactive blue 4 and reactive yellow brown) and two azo dyes (reactive red 11 and reactive brilliant orange) could be partially decolorized by purified laccase in the absence of a mediator. The decolorization process was efficiently promoted when methylsyringate was present, with more than 90 % of color removal occurring in 3 h at pH 7.0 or 9.0. These unusual properties indicated a high potential of the novel CotA-laccase for industrial applications.  相似文献   

2.
An inulinase-producing strain, Paenibacillus polymyxa ZJ-9, was isolated from natural sources to produce R,R-2,3-butanediol via one-step fermentation of raw inulin extracted from Jerusalem artichoke tubers. The inulinase gene from P. polymyxa ZJ-9 was cloned and overexpressed in Escherichia coli BL21 (DE3), and the purified recombinant inulinase was estimated to be approximately 56 kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and gel filtration chromatography. This result suggests that the active form of the inulinase is probably a monomer. Terminal hydrolysis fructose units from the inulin indicate that enzymes are exo-inulinase. The purified recombinant enzyme showed maximum activity at 25 °C and pH 6.0, which indicate its extreme suitability for industrial applications. Zn2+, Fe2+, and Mg2+ stimulated the activity of the purified enzyme, whereas Co2+, Cu2+, and Ni2+ inhibited enzyme activity. The K m and V max values for inulin hydrolysis were 1.72 mM and 21.69 μmol min?1 mg?1 protein, respectively. The same parameters toward sucrose were 41.09 mM and 78.7 μmol min?1 mg?1 protein, respectively. Considering its substrate specificity and other enzymatic characteristics, we believe that this inulinase gene from P. polymyxa ZJ-9 could be transformed into other special bacterial strains to allow inulin conversion to other biochemicals and bioenergy through one-step fermentation.  相似文献   

3.
In this study, carbohydrates (cellulose plus hemicellulose) in corncob were effectively converted furfuralcohol (FOL) via chemical–enzymatic catalysis in a one-pot manner. After corncob (2.5 g, dry weight) was pretreated with 0.5 wt% oxalic acid, the obtained corncob-derived xylose (19.8 g/L xylose) could be converted to furfural at 60.1% yield with solid acid catalyst SO4 2?/SnO2-attapulgite (3.6 wt% catalyst loading) in the water–toluene (3:1, v/v) at 170 °C for 20 min. Moreover, the oxalic acid-pretreated corncob residue (1.152 g, dry weight) was enzymatically hydrolyzed to 0.902 g glucose and 0.202 g arabinose. Using the corncob-derived glucose (1.0 mM glucose/mM furfural) as cosubstrate, the furfural liquor (48.3 mM furfural) was successfully biotransformed to FOL by recombinant Escherichia coli CCZU-A13 cells harboring an NADH-dependent reductase (SsCR) in the water-toluene (4:1, v/v) under the optimum conditions (50 mM PEG-6000, 0.2 mM Zn2+, 0.1 g wet cells/mL, 30 °C, pH 6.5). After the bioreduction for 2 h, FAL was completely converted to FOL. The FOL yield was obtained at 0.11 g FOL/g corncob. Clearly, this one-pot synthesis strategy shows high potential application for the effective synthesis of FOL.  相似文献   

4.
In this study, the gene encoding an α-amylase from a psychrophilic Arthrobacter agilis PAMC 27388 strain was cloned into a pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3). The recombinant α-amylase with a molecular mass of about 80 kDa was purified by using Ni2+-NTA affinity chromatography. This recombinant α-amylase exhibited optimal activity at pH 3.0 and 30 °C and was highly stable at varying temperatures (30–60 °C) and within the pH range of 4.0–8.0. Furthermore, α-amylase activity was enhanced in the presence of FeCl3 (1 mM) and β-mercaptoethanol (5 mM), while CoCl2 (1 mM), ammonium persulfate (5 mM), SDS (10 %), Triton X-100 (10 %), and urea (1 %) inhibited the enzymatic activity. Importantly, the presence of Ca2+ ions and phenylmethylsulfonyl fluoride (PMSF) did not affect enzymatic activity. Thin layer chromatography (TLC) analysis showed that recombinant A. agilis α-amylase hydrolyzed starch, maltotetraose, and maltotriose, producing maltose as the major end product. These results make recombinant A. agilis α-amylase an attractive potential candidate for industrial applications in the textile, paper, detergent, and pharmaceutical industries.  相似文献   

5.
In this study, a high (R)-enantioselective nitrilase gene from Sphingomonas wittichii RW1 was cloned and overexpressed in Escherichia coli BL21 (DE3). The recombinant nitrilase was purified to homogeneity with a molecular weight of 40 kDa. The pH and temperature optima were shown to be pH 8.0 and 40 °C, respectively. The purified nitrilase was most active toward succinonitrile, approximately 30-fold higher than that for phenylglycinonitrile. Using the E. coli BL21/ReSWRW1 whole cells as biocatalysts, the kinetic resolution for asymmetric synthesis of (R)-phenylglycine was investigated at pH 6.0. A yield of 46 % was obtained with 95 % enantiomeric excess (ee), which made it a promising biocatalyst for synthesis of (R)-phenylglycine.  相似文献   

6.
Adenylate deaminase (AMPD, EC 3.5.4.6) is an aminohydrolase that widely used in the food and medicine industries. In this study, the gene encoding Aspergillus oryzae AMPD was cloned and expressed in Escherichia coli. Induction with 0.75 mM isopropyl β-d-l-thiogalactopyranoside resulted in an enzyme activity of 1773.9 U/mL. Recombinant AMPD was purified to electrophoretic homogeneity using nickel affinity chromatography, and its molecular weight was calculated as 78.6 kDa. Purified AMPD exhibited maximal activity at 35 °C, pH 6.0 and 30 mM K+, with apparent K m and V max values of 2.7 × 10?4 M and 77.5 μmol/mg/min under these conditions. HPLC revealed that recombinant AMPD could effectively catalyse the synthesis of inosine-5′-monophosphate (IMP) with minimal by-products, indicating high specificity and suggesting that it could prove useful for IMP production.  相似文献   

7.
For high-throughput screening (HTS) of Bacillus fastidiosus uricase mutants, a practical system was proposed. By error-prone PCR with final 1.5 mM MnCl2, two focused libraries of mutants for A1-V158 and V150-D212 were generated separately. After induced expression of individual clones in 48-well microplates, Escherichia coli cells (BL21) were lyzed by 1.0 M Tris-HCl at pH 9.0 in 96-well microplates at 25 °C for 7.5 ~ 10.5 h; uricase reaction was continuously monitored with 0.15 mM uric acid in 96-well plates by absorbance at 298 nm to estimate V m/K m by kinetic analysis of reaction curve for comparison. V m/K m was resistant to initial uric acid levels with an upper limit 3-fold over that of initial rates. By receiver-operator-characteristic analysis of the recognition of the one of higher activity in uricase pair whose specific activity ratio was 1.8 or 3.3, the area-under-the-curve was comparable to that with cell lysates prepared by sonication treatment. A cutoff for the maximum Youden index was thus developed to recognize positive mutants of 1-fold higher activity. Indeed, mutant L171I/Y182F/Y187F/A193S of higher activity but lower thermostability at pH 7.4 and mutant V144A of higher activity and consistent thermostability were discovered. Therefore, the proposed system was practical for HTS of uricase mutants.  相似文献   

8.
Based on thermal asymmetric interlaced polymerase chain reaction, the arpde gene encoding a cyclic nucleotide-specific phosphodiesterase was cloned from Arthrobacter sp. CGMCC 3584 for the first time. The 930-bp region encoded a 309-amino-acid protein with a molecular weight of 33.6 kDa. The recombinant ArPDE was able to hydrolyze 3′,5′-cAMP, 3′,5′-cGMP, and 2′,3′-cAMP. The K m values of ArPDE for 3′,5′-cAMP and 3′,5′-cGMP were 6.82 and 12.82 mM, respectively. ArPDE was thermostable and displayed optimal activity at 45 °C and pH 7.5. The enzyme did not require any metal cofactors, although its activity was stimulated by 2 mM Co2+ and inhibited by Zn2+. Nucleotides, reducing agents, and sulfhydryl reagents had different inhibitory effects on the activity of ArPDE. NaF, the actual compound used to improve the industrial yield of cAMP, exhibited 62 % inhibitions at concentrations of 10 mM.  相似文献   

9.
Cellulases can be used for biofuel production to decrease the fuel crises in the world. Microorganisms cultured on lignocellulosic wastes can be used for the production of cellulolytic enzymes at large scale. In the current study, cellulolytic enzyme production potential of Aspergillus fumigatus was explored and optimized by employing various cultural and nutritional parameters. Maximum endoglucanase production was observed after 72 h at 55 °C, pH 5.5, and 70 % moisture level. Addition of 0.3 % of fructose, peptone, and Tween-80 further enhanced the production of endoglucanase. Maximum purification was achieved with 40 % ammonium sulfate, and it was purified 2.63-fold by gel filtration chromatography. Endoglucanase has 55 °C optimum temperature, 4.8 optimum pH, 3.97 mM K m, and 8.53 μM/mL/min V max. Maximum exoglucanase production was observed at 55 °C after 72 h, at pH 5.5, and 70 % moisture level. Further addition of 0.3 % of each of fructose, peptone, and Tween-80 enhances the secretion of endoglucanase. It was purified 3.30-fold in the presence of 40 % ammonium sulfate followed by gel filtration chromatography. Its optimum temperature was 55 °C, optimum pH was 4.8, 4.34 mM K m, and 7.29 μM/mL/min V max. In the case of β-glucosidase, maximum activity was observed after 72 h at 55 °C, pH 5.5, and 70 % moisture level. The presence of 0.3 % of fructose, peptone, and Tween-80 in media has beneficial impact on β-glucosidase production. A 4.36-fold purification was achieved by 40 % ammonium sulfate precipitation and gel filtration chromatography. Optimum temperature of β-glucosidase was 55 °C, optimum pH was 4.8, K m was 4.92 mM, and V max 6.75 μM/mL/min. It was also observed that fructose is better than glucose, and peptone is better than urea for the growth of A. fumigatus. The K m and V max values indicated that endoglucanase, exoglucanase, and β-glucosidase have good affinity for their substrates.  相似文献   

10.
Xylanase encoding gene (1,224 bp) from Geobacillus thermodenitrificans was cloned in pET28a (+) vector and successfully expressed in Escherichia coli BL21 (DE3). The deduced amino acid sequence analysis revealed homology with that of glycosyl hydrolase (GH) 10 family with a high molecular mass (50 kDa). The purified recombinant xylanase is optimally active at pH 9.0 and 70 °C with T 1/2 of 10 min at 80 °C, and retains greater than 85 % activity after exposure to 70 °C for 180 min. The enzyme liberates xylose as well as xylooligosaccharides from birchwood xylan and agro-residues, and therefore, this is an endoxylanase. The xylan hydrolytic products (xylooligosaccharides, xylose, and xylobiose) find application as prebiotics and in the production of bioethanol. The xylanase being thermostable and alkalistable, it has released chromophores and phenolics from the residual lignin of pulps, suggesting its utility in mitigating chlorine requirement in pulp bleaching.  相似文献   

11.
Acetaldehyde dehydrogenase (E.C. 1.2.1.10) plays a key role in the acetaldehyde detoxification. The recombinant Escherichia coli cells producing acetaldehyde dehydrogenase (ist-ALDH) were applied as whole-cell biocatalysts for biodegradation of acetaldehyde. Response surface methodology (RSM) was employed to enhance the production of recombinant ist-ALDH. Under the optimum culture conditions containing 20.68 h post-induction time, 126.75 mL medium volume and 3 % (v/v) inoculum level, the maximum ist-ALDH activity reached 496.65?±?0.81 U/mL, resulting in 12.5-fold increment after optimization. Furthermore, the optimum temperature and pH for the catalytic activity of wet cells were 40 °C and pH 9.5, respectively. The biocatalytic activity was improved 80 % by permeabilizing the recombinant cells with 0.075 % (v/v) Triton X-100. When using 2 mmol/L NAD+ as coenzyme, the permeabilized cells could catalyze 98 % of acetaldehyde within 15 min. The results indicated that the recombinant E. coli with high productivity of ist-ALDH might be highly efficient and easy-to-make biocatalysts for acetaldehyde detoxification.  相似文献   

12.
Two genes, cut1 and cut2, of Thermobifida fusca NRRL B-8184 with cutin-hydrolyzing activity were cloned and expressed in Escherichia coli BL21 (DE3) separately. Enhanced expression was achieved after screening of six different media, optimization of the culture conditions and medium components. Among the screened media, modified Terrific Broth was found to be the best for maximum production of recombinant cutinases in E. coli BL21 (DE3). Under optimal conditions, the production of recombinant Cut1 and Cut2 (cutinases) were found to be 318?±?0.73 and 316?±?0.90 U/ml, respectively. The production of recombinant cutinases was increased by 11-fold as compared with T. fusca NRRL B-8184 wild-type strain. Both the recombinant cutinases were purified to homogeneity. They were found to be thermostable, organic solvent, and surfactant tolerant. Both the cutinase were active in a broad range of temperature (40–80 °C) and pH (6.8–9) with optimum activity at pH 8.0 and 55 °C.  相似文献   

13.
Corn silage is used as high-energy forage for dairy cows and more recently for biogas production in a process of anaerobic co-digestion with cow manure. In this work, fresh corn silage after the harvest was used as a substrate in solid-state fermentations with T. versicolor with the aim of phenolic acid recovery and enzyme (laccase and manganese peroxidase) production. During 20 days of fermentation, 10.4-, 3.4-, 3.0-, and 1.8-fold increments in extraction yield of syringic acid, vanillic acid, p-hydroxybenzoic acid, and caffeic acid, respectively, were reached when compared to biologically untreated corn silage. Maximal laccase activity was gained on the 4th day of fermentation (V.A. = 180.2 U/dm3), and manganese peroxidase activity was obtained after the 3rd day of fermentation (V.A. = 30.1 U/dm3). The addition of copper(II) sulfate as inducer during solid state fermentation resulted in 8.5- and 7-fold enhancement of laccase and manganese peroxidase activities, respectively. Furthermore, the influence of pH and temperature on enzyme activities was investigated. Maximal activity of laccase was obtained at T = 50 °C and pH = 3.0, while manganese peroxidase is active at temperature range T = 45–70 °C with the maximal activity at pH = 4.5.  相似文献   

14.
1,3-1,4-β-Glucanase received great interest due to its application in brewing and feed industries. Application of 1,3-1,4-β-glucanase in brewing industry helps make up for the defect that plant-derived β-glucanases are heat-sensitive. A new strain, CGX5-1, exhibited remarkable 1,3-1,4-β-glucanase, was isolated from Asian giant hornet nest and identified Bacillus tequilensis. Moreover, a new 1,3-1,4-β-glucanase gene from B. tequilensis was cloned and measured to be 720 bp encoding 239 amino acids, with a predicted molecular weight of 26.9 kDa. After expressed in Escherichia coli BL21, active recombinant enzyme of 24 kDa was detected in the supernatant of cell culture, with the activity of 2,978.2 U/mL. The new enzyme was stable in the pH 5.0–7.5 with the highest activity measured at pH 6.0. Moreover, it is thermostable within 45 to 60 °C. The property of the new recombinant enzyme makes this enzyme a broad prospect in brewing industry. Moreover, this is the first report on 1,3-1,4-β-glucanase produced by B. tequilensis.  相似文献   

15.
Cadaverine is used for the synthesis of the novel bio-polyamides 54, 56, and 510. Here, we examine the feasibility of using a lysine decarboxylase (LdcC) from Escherichia coli for high-level production of cadaverine. After sequential optimization of whole-cell biotransformation conditions, recombinant E. coli-overexpressing LdcC (EcLdcC) could produce 1.0 M cadaverine from 1.2 M crude l-lysine solution after 9 h. EcLdcC retained a higher cadaverine yield after being reused 10 times at acidic and alkaline pH values than that of a recombinant E. coli strain overexpressing an inducible lysine decarboxylase (CadA), a conventional cadaverine producer (90 vs. 51% at pH 6 and 55 vs. 15% at pH 8). This study reveals that EcLdcC is a promising whole-cell biocatalyst for the bio-based production of cadaverine from industrial grade l-lysine in comparison to EcCadA.  相似文献   

16.
A gene coding for the extracellular esterase (EstK) was cloned from the psychrotrophic bacterium Pseudomonas mandelii based on its partial amino acid sequence as determined by mass spectrometry. The entire open reading frame consisting of 1,011 bp was expressed in Escherichia coli as a soluble protein and purified by nickel-chelated affinity chromatography and Capto Q column chromatography. Here, we show that the 33-kDa recombinant EstK protein (rEstKsp) had a substrate preference for esters of short-chain fatty acids, especially, p-nitrophenyl acetate. Optimum activity of rEstKsp was at pH 8.5 and 40 °C. The esterase activity remained similar from a range of 4~20 °C, but the maximum activity varied depending upon pH. With p-nitrophenyl acetate as the substrate, K M was 210 μM and k cat was 3.4 s?1. Circular dichroism and fluorescence spectroscopy results revealed that rEstKsp had a predominantly α-helical structure and maintained its folded state at 4~40 °C. Interestingly, the tertiary structure of rEstKsp was predicted based on the structures of other hyperthermophilic esterases. Our results demonstrated that both native and rEstKsp are active at low temperatures and have a unique substrate preference for p-nitrophenyl acetate.  相似文献   

17.
In the present study, three different types of hydrogels i.e., (poly (?acrylamide)/alginate (P (AAm)/Alg), poly (acrylamide-N-isopropylacrylamide) (P (AAm-NIPA)), and poly (acrylamide-N-isopropylacrylamide)/alginate (P (AAm-NIPA)/Alg)) were synthesized by acrylamide, alginate, and N-isopropylacrylamide for the entrapment of laccase. The hydrogel-entrapped and free laccase showed optimum temperature of 50 °C for the oxidation of ABTS, but the entrapped laccase showed high temperature, pH, and storage stability as compared to the free enzyme. The K m values of free laccase, (P (AAm)/Alg)-L, (P (AAm-NIPA))-L, and (P (AAm-NIPA)/Alg)-L were found to be 0.13, 0.28, 0.33, and 0.50 mM, respectively. The V max values of free laccase, (P (AAm)/Alg)-L, (P (AAm-NIPA))-L, and (P (AAm-NIPA)/Alg)-L were found to be 22.22?×?102, 5.55?×?102, 5.0?×?102, and 4.54?×?102 mM/min, respectively. The entrapped laccase hydrogels were used for the decolorization of Reactive Violet 1 dye, with 39 to 45 % decolorization efficiency till the 10th cycle.  相似文献   

18.
Nanoporous and planar gold electrodes were utilised as supports for the redox enzymes Aspergillus niger glucose oxidase (GOx) and Corynascus thermophilus cellobiose dehydrogenase (CtCDH). Electrodes modified with hydrogels containing enzyme, Os-redox polymers and the cross-linking agent poly(ethylene glycol)diglycidyl ether were used as biosensors for the determination of glucose and lactose. Limits of detection of 6.0 (±0.4), 16.0 (±0.1) and 2.0 (±0.1) μM were obtained for CtCDH-modified lactose and glucose biosensors and GOx-modified glucose biosensors, respectively, at nanoporous gold electrodes. Biofuel cells composed of GOx- and CtCDH-modified gold electrodes were utilised as anodes, together with Myrothecium verrucaria bilirubin oxidase (MvBOD) or Melanocarpus albomyces laccase as cathodes, in biofuel cells. A maximum power density of 41 μW/cm2 was obtained for a CtCDH/MvBOD biofuel cell in 5 mM lactose and O2-saturated buffer (pH 7.4, 0.1 M phosphate, 150 mM NaCl).  相似文献   

19.
A method for sensitive simultaneous analysis of aliphatic primary amines and diamines has been developed and validated. The compounds were analyzed by reversed-phase high-performance liquid chromatography after pre-column derivatization with 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester as fluorescent probe. The derivatization reaction was performed at 50 °C for 40 min in 0.1 mol L?1 borax buffer solution (pH 7.5). The resulting fluorophores were separated to baseline on a C18 column and fluorimetrically detected at λ ex/λ em = 326/409 nm. Detection limits were in the range 0.50–0.02 nmol L?1. The method was successfully used for analysis of aliphatic amines in water, human urine, and serum.  相似文献   

20.
α-Amylase from Thermoactinomyces vulgaris was highly purified 48.9-fold by ammonium sulfate precipitation, gel filtration on Sephadex G-50 column, and ion exchange chromatography column of DEAE-cellulose. The molecular weight of the enzyme was estimated to be 135 and 145 kDa by SDS–PAGE. Its high molecular weight is due to high glycosylation. The purified amylase exhibited maximal activity at pH 6.0 to 7.0 and was stable in the range of pH 4.0 to 9.0. The optimum temperature for its activity was 50 °C. The enzyme half-life time was 120 min at 50 °C, suggesting intermediate temperature stable α-amylase. The enzyme was sensitive to different metal ions, including NaCl, CoCl2, and CaCl2, and to different concentrations of EDTA. The enzyme activity was inhibited in the presence of 1 mM CaCl2, suggesting that it is a calcium-independent α-amylase. The TLC showed that the amylase hydrolyzed starch to produce large maltooligosaccharides as the main products. A 1.1-kb DNA fragment of the putative α-amylase gene (amy TVE) from T. vulgaris was amplified by using two specific newly designed primers. Sequencing analysis showed 56.2 % similarity to other Thermoactinomyces α-amylases with two conserved active sites confirming its function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号