首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 656 毫秒
1.
王光荣  李熙灿  曾和平  Zeng  Heping 《化学学报》2009,67(9):974-982
设计合成了3-[2-(8-羟基喹啉基)-乙烯基]-N-对甲苯基咔唑(8)和3-[2-(8-羟基喹啉基)-乙烯基]-N-对甲氧苯基咔唑(9)两个新的化合物, 用IR, MS, 1H NMR和元素分析确认其结构. 并利用DPPH•方法, 超氧阴离子自由基( )法, 羟基自由基HO•法和噻唑蓝比色法(MTT法)分别测定了目标产物的抗氧化活性和调控鼠骨髓间质干细胞(MSCs)的作用. 结果表明, 这两种化合物对DPPH•自由基、超氧阴离子自由基和羟基自由基具有较强的抗氧化活性, 化合物9在低浓度时对鼠骨髓间质干细胞增殖有很好的促进作用.  相似文献   

2.
采用浸渍还原法制备了纳米Au/C, 并将其用作直接硼氢化钠-过氧化氢燃料电池阴极催化剂. 通过X-射线衍射(XRD)和透射电镜(TEM)对催化剂进行结构和形貌分析, 结果表明10~20 nm的纳米Au粒子均匀地分散在Vulcan XC-72R碳黑表面上. 循环伏安测试表明, 在0.5 mol•L-1 H2SO4和2 mol•L-1 H2O2混合溶液中, 纳米Au/C在0.85 V处表现较强的不可逆还原电流. 以纳米Au/C为阴极催化剂, AB5储氢合金为阳极催化剂制成直接硼氢化钠-过氧化氢燃料电池. 电池在30 ℃下的最大功率密度可达到78.6 mW•cm-2. 当电池工作温度升高至50 ℃时, 电池的最大功率密度超过120 mW•cm-2. 此外, 研究了阴极溶液中H2SO4和H2O2浓度对电池性能的影响. 当阴极溶液中H2SO4浓度小于0.5 mol•L-1时, 酸浓度对电池性能影响较大; H2O2浓度对电池性能影响较小. 确定了阴极溶液中H2SO4和H2O2的最佳浓度分别为0.5和2 mol•L-1.  相似文献   

3.
4-(β-D-吡喃阿洛糖苷)-α-氯代苯甲醛肟与N-芳基马来酰亚胺在三乙胺作用下, 以甲醇为溶剂, 通过1,3-偶极环加成, 合成了一系列未见文献报道的3-(4-β-D-吡喃阿洛糖苷苯基)-4-胺羰基-5-甲氧羰基异噁唑衍生物; 其结构经1H NMR, IR, MS (HRMS)加以确证. 并对4a~4h和5a进行了药理活性筛选, 结果表明, 部分化合物具有良好的镇静活性. 其中, 化合物4b (200 mg•kg-1), 4c (200 mg•kg-1), 4h (200 mg•kg-1), 与豆腐果苷相比较具有更强的活性.  相似文献   

4.
以Cd2+和[Cr(CN)6]3-为建筑基元通过自组装合成普鲁士蓝类配位聚合物KCd[Cr(CN)6]•H2O (1•H2O), 并用红外光谱、元素分析、单晶X射线衍射、粉末X射线衍射、热重分析和氮气吸附脱附等手段对其进行了表征. 配位聚合物1•H2O属于面心立方晶系, 空间群Fm-3m, 晶胞参数: a=b=c=1.09059 mn, α=β=γ=90°. 配位聚合物1•H2O是由K+, Cd2+, [Cr(CN)6]3-离子和一个结晶水分子组成的三维多孔结构. 热重分析结果表明失水样品1的骨架结构在120~ 200 ℃之间保持稳定. 氮气吸附脱附研究表明: 失水样品1具有683.6 m2•g-1的比表面积, 氮气最大吸附量为8.83 mmol•g-1.  相似文献   

5.
用TAM air微量热仪测定了新合成的稀土水杨酸硫代脯氨酸配合物RE(Hsal)2•(tch)•2H2O (RE=La, Sm; Hsal=C7H5O3; tch=C4H6NO2S)在37.00 ℃时对大肠杆菌作用的产热曲线; 根据产热曲线求算了在稀土水杨酸硫代脯氨酸配合物作用下, 大肠杆菌生长代谢的最大发热功率Pmax、速率常数k、传代时间tG、抑制率I和半抑制浓度cI,50等热动力学参数. 结果表明: 稀土水杨酸硫代脯氨酸配合物在低浓度下对大肠杆菌有刺激作用, 高浓度下为抑制作用, 即稀土配合物对微生物的生长具有双向生物效应, 也称为Hormesis效应. 配合物La(Hsal)2•(tch)•2H2O和Sm(Hsal)2•(tch)•2H2O的半抑制浓度cI,50分别为7.60和1.62 mg•L-1. 即配合物Sm(Hsal)2•(tch)•2H2O的抑制效果优于La(Hsal)2•(tch)•2H2O.  相似文献   

6.
孔德轮  高保娇  李刚 《物理化学学报》2006,22(11):1399-1403
采用粘度法确定了聚4-乙烯基吡啶(P4VP)在乙醇/水混合溶剂中的临界交迭浓度c*, 分别在稀溶液与亚浓溶液浓度范围内, 采用光谱法与电导滴定法研究了P4VP与Cu(II)离子的配合过程及配合物的结构, 通过红外光谱(FTIR)对配合物的化学结构进行了表征, 并用差示扫描量热法(DSC)测定了配合物的热性能. 结果表明, 对于相对分子质量为1.06×105的P4VP, 其c*为15 mmol•L−1(按P4VP中的链节量计算). 在稀溶液中P4VP与Cu(II)离子形成可溶性的分子内配合物, 表观配位数为9~10;在亚浓溶液中, P4VP与Cu(II)离子发生分子间配合作用, 由于配位交联, 形成不溶性的配合物P4VP-Cu(II), 配位数为3. P4VP与Cu(II)离子形成配合物后, 玻璃化温度明显提高.  相似文献   

7.
在pH 1.8~3.0的Britton-Robinson (BR)缓冲溶液中, 钴(II)与2-(5-溴-2-吡啶偶氮)-5-二乙氨基酚(5-Br-PADAP)(HL)反应形成紫红色螯合阳离子, 此时仅能引起吸收光谱的变化, 不能导致共振瑞利散射(RRS)的增强. 当钴(II)-5-Br-PADAP螯合阳离子与阴离子表面活性剂十二烷基苯磺酸钠(SDBS)、十二烷基磺酸钠(SLS)和十二烷基硫酸钠(SDS)作用时, 仅能与SDBS进一步反应形成三元离子缔合物并引起RRS的显著增强, 而不与SDS和SLS产生类似反应. 离子缔合物的RRS峰分别位于306, 370和650 nm处, 在一定范围内RRS增强(ΔI)与SDBS浓度成正比, 当用650 nm处测量时, 其检出限为0.043 μg•mL-1, 线性范围为0.14~6.0 μg•mL-1. 文中研究了反应产物的RRS光谱特征, 适宜的反应条件及分析化学性质, 据此发展了一种在一定量SDS和SLS等阴离子表面活性剂存在下选择性测定SDBS的新方法, 方法灵敏、简便、快速,用于天然水和污水中SDBS的测定, 获得满意结果. 文中还对反应机理进行了讨论.  相似文献   

8.
以金纳米粒子修饰玻碳电极为工作电极, 采用超声-微分脉冲阳极溶出伏安法连续测定饮用水中痕量铅(II)和 铜(II). 通过原子力显微镜(AFM)对金纳米粒子的形貌和大小进行表征, 对超声波提高伏安检测信号的工作机理作了比较详细的探讨. 实验结果表明, 超声波-伏安法提高了方法的灵敏度, 与传统的微分脉冲伏安法相比, Pb(II)和Cu(II)的峰电流分别增大10倍和8倍. Pb(II)和Cu(II)离子在质量浓度10~250 µg•L-1和5~200 µg•L-1范围内成良好的线性关系, 相关系数分别为0.9943和0.9985. 在含有50 µg•L-1 Pb(II)和20 µg•L-1 Cu(II)的溶液中重复测定9次, 其相对标准偏差为3.5%和2.2%, Pb(II)和Cu(II)的检出限分别为0.3 ng•mL-1和0.1 ng•mL-1. 该方法成功应用于饮用水中痕量Pb(II)和Cu(II)的检测, 方法简便可靠, 具有实际应用意义.  相似文献   

9.
王剑  刘忠芳  刘绍璞  申伟 《化学学报》2008,66(11):1337-1343
在pH 4.5~6.5的Britton-Robinson缓冲溶液中, 钴(II)与环丙沙星(CIP)、诺氟沙星(NOR)、氧氟沙星(OF)和左氧氟沙星(LEV)等氟喹诺酮类抗生素(FLQs)能形成螯合阳离子, 它们能通过静电引力和疏水作用与刚果红(CR)阴离子反应, 形成1∶2∶1 (Co2+∶FLQs∶CR)三元离子缔合配合物. 此时将引起溶液的共振瑞利散射(RRS)显著增强, 并出现新的RRS光谱. 不同抗生素具有相似的光谱特征, 其最大散射波长均位于560 nm处, 并在382和278 nm处有2个较小的散射峰. 一定浓度的抗生素与散射增强(ΔI)成正比, 对不同氟喹诺酮类药物的线性范围和检出限(3s)分别是0.026~2.64 μg•mL-1和7.68 ng•mL-1 (CIP), 0.045~3.20 μg•mL-1和13.00 ng• mL-1 (NOR), 0.037~4.00 μg•mL-1和11.24 ng• mL-1 (OF), 0.039~4.00 μg•mL-1和11.80 ng•mL-1 (LEV), 据此提出了一种以RRS技术测定氟喹诺酮抗生素的新方法. 方法不仅灵敏度高, 而且简单、快速, 并有良好的选择性和重复性, 可用于片剂、针剂、滴眼液和人尿液中氟喹诺酮类药物的测定. 文中还对反应机理和RRS增强的原因作了讨论.  相似文献   

10.
脉冲辐解研究葛根素对自由基的清除活性   总被引:3,自引:0,他引:3       下载免费PDF全文
采用脉冲辐解技术, 研究了葛根素(puerarin, 一种异黄酮)对二氧化氮自由基(NO2•)、一氧化氮自由基(NO•)和羟基自由基(OH•)的清除活性. 葛根素与NO2•和NO•反应产生的瞬态吸收峰都在340 nm, 该吸收峰归结为瞬态产物puerarin-4-O•; 葛根素与OH•反应产生了较宽的瞬态吸收光谱(300~750 nm), 该谱图归结为puerarin-2-O•, puerarin-4-O•和[puerarin-OH]•瞬态吸收的叠加. 另外, 葛根素与NO2•, NO•和OH•反应的速率常数分别为2.6 × 108, 1.7 × 108和3.9 × 109 L·mol-1·s-1.  相似文献   

11.
在0.5 mol•dm-3硫酸介质中, 循环伏安法电解间甲苯胺的原位紫外可见光谱图表明聚间甲基苯胺产生在氧化铟锡导电玻璃电极表面上. 在恒电位条件下, 用原位紫外-可见光谱较详细地研究了间甲基苯胺在氧化铟锡(ITO)上的电化学聚合. 结果表明间甲基苯胺只能在较高电解电位和单体浓度足够大的条件下才能发生电化学聚合. 在0.7 V(相对于饱和的Ag/AgCl), 0.2 mol•dm-3的间甲基苯胺和0.9 V, 20 mmol•dm-3的间甲基苯的实验条件下, 尽管在ITO电极上没有发生电化学均聚合, 但原位紫外-可见光谱表明在电极表面上可能还形成低分子量的齐聚物. 在低电位0.8 V下, 电化学聚合200 mmol•dm-3间甲苯胺时, 有明显的诱导期存在. 在恒电位电解的条件下, 相应的原位紫外-可见光谱和聚合物的傅立叶变换红外光谱(FTIR)表明间甲基苯胺和对苯二胺能发生电化学共聚反应, 由于对苯二胺可能与间甲基苯胺形成了具有较强反应活性的中间体, 使得对苯二胺的加入不但促进和加速了聚合反应, 而且还结合进聚合物中形成了phenazine或类似于phenazine的环结构.  相似文献   

12.
合成路径对超级电容器用二氧化锰性质的影响   总被引:2,自引:0,他引:2  
万传云  王利军  沈绍典  朱贤 《化学学报》2009,67(14):1559-1565
研究了不同合成路径对二氧化锰结构及电化学性能的影响. 路径1为将0.15 mol/L醋酸锰溶液加入到0.1 mol/L高锰酸钾溶液中; 路径2中, 物料的加料方式与路径1相反. X射线衍射和扫描电镜测试表明合成的产物均为无定型α-MnO2, 晶粒尺寸为200~300 nm. 氮吸附曲线测试结果表明: 路径1所得的二氧化锰具有较大的比表面积(329 m2/g), 其孔径分布比较均一, 孔径6~12 nm, 孔体积较小(0.45 cm3/g); 路径2所得的二氧化锰比表面积较小(298 m2/g), 具有从微孔到大孔的连续分布孔, 平均孔径11.4 nm, 孔体积较大(0.66 cm3/g). 交流阻抗和循环伏安电化学测试结果显示: 路径2所得样品具有较大的法拉第阻抗, 在较低扫描速度下(2 mV•s-1), 其比电容(203 F•g-1)比路径1所得MnO2高(189 F•g-1), 路径1所得二氧化锰的比电容随扫描速度变化的趋势较小. 恒流充放电测试显示路径1合成的二氧化锰具有较好的功率特性. 在2 A•g-1的电流密度下, 其比容量为0.1 A•g-1电流密度下的96.3%, 而路径1的样品的容量保持率为92.5%. 造成上述结果差异的原因是由于不同合成路径导致二氧化锰存在不同的孔结构特征所致.  相似文献   

13.
K2FeO4-Zn碱性固态电解质电池电化学性能研究   总被引:2,自引:0,他引:2  
应用溶液铸膜法制备出了交联聚乙烯醇(PVA)/聚丙烯酸(PAA)-KOH-H2O复合碱性固态电解质膜, 其厚度为150 µm左右, SEM测试结果表明其表面呈均相的非晶态结构, 交流阻抗(EIS)测试表明室温离子电导率可达3.5×10-2 S• cm-1, 循环伏安(CV)测试表明其电化学稳定窗口为3.5 V左右, 将其应用于一次碱性K2FeO4-Zn电池, 通过研究固态电解质膜在不同浓度KOH碱液中预处理和其在不同放电倍率下的放电性能, 结果表明, 9 mol•L-1为最佳固态电解质膜预处理碱液浓度, 0.4 C为最佳放电倍率, 1.0 V以上容量最高可达222.6 mAh•g-1, 并表现出良好的放电平台特性.  相似文献   

14.
纳米CdS与明胶蛋白质的相互作用   总被引:1,自引:1,他引:0  
唐世华  黄建滨 《化学学报》2008,66(13):1534-1540
利用荧光光谱和紫外-可见吸收光谱研究了pH=12.0及不同温度下, CdS纳米晶与明胶结合反应的光谱行为, 实验发现在明胶溶液中CdS的生成对明胶的内源荧光有较强的猝灭作用. 用Lineweave-Burk方程处理实验数据, 发现CdS与明胶发生反应生成了配合物, 结合红外和紫外-可见吸收光谱结果, 属于静态荧光猝灭; 计算了不同温度下反应的结合常数K (285 K: 1.07×104 L•mol-1; 292 K: 9.69×103 L•mol-1; 299 K: 8.06×103 L•mol-1)及对应温度下结合反应的热力学参数(ΔrHm=-14.18 kJ•mol-1; ΔrGm=-21.98/-22.28/-22.36 kJ•mol-1; ΔrSm=27.36/27.74/27.36 J•K-1•mol-1), 证明二者主要靠静电作用力结合. 根据Förster的偶极-偶极非辐射能量转移原理计算出结合位置距离色氨酸残基4.09 nm, 发生分子内的非辐射能量转移. 为探讨纳米颗粒与此类生物大分子之间相互作用的化学机制提供了重要的信息.  相似文献   

15.
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号