首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral ruthenium(II) complexes [RuLL'(CN)2] (L, L' = bpy, dmb, dbb; bpy = 2,2'-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine, dbb = 4,4'-tert-butyl-2,2'-bipyridine) were prepared, and the luminescence characteristics of the complexes in the solid state were measured. The luminescence was tuned by crystal waters included in the crystals; for example, [Ru(dbb)2(CN)2] x 2H2O, [Ru(dbb)2(CN)2] x H2O, and [Ru(dbb)2(CN)2] emit luminescence at 640, 685, and 740 nm, respectively.  相似文献   

2.
Amphiphilic ligands 4,4'-bis(1-adamantyl-aminocarbonyl)-2,2'-bipyridine (L(1)), 4,4'-bis[5-[N-[2-(3beta-cholest-5-en-3-ylcarbamate-N-yl)ethyl]aminocarbonyl]]-2,2'-bipyridine (L(2)), 4,4'-bis[5-[N-[2-(3beta-cholest-5-en-3-ylcarbamate-N-yl)propyl]aminocarbonyl]]-2,2'-bipyridine (L(3)), and 4,4'-bis(dodecan-12-ol)-2,2'-bipyridine (L(4)) and their heteroleptic ruthenium(II) complexes of the type [Ru(II)LL(1)(NCS)(2)] (5), [Ru(II)LL(2)(NCS)(2)] (6), [Ru(II)LL(3)(NCS)(2)] (7), and [Ru(II)LL(4)(NCS)(2)] (8) (where L = 4,4'-bis(carboxylic acid)-2,2'-bipyridine) have been synthesized starting from dichloro(p-cymene)ruthenium(II) dimer. All the ligands and the complexes were characterized by analytical, spectroscopic, and electrochemical techniques. The performance of these complexes as charge-transfer photosensitizers in nanocrystalline TiO(2)-based solar cells was studied. When complexes 5-8 anchored onto a 12 + 4 microm thick nanocrystalline TiO(2) films, very efficient sensitization was achieved (85 +/- 5% incident photon-to-current efficiencies in the visible region, using an electrolyte consisting of 0.6 M butylmethylimidazolium iodide, 0.05 M I(2), 0.1 M LiI, and 0.5 M tert-butyl pyridine in 1:1 acetonitrile + valeronitrile). Under standard AM 1.5 sunlight, the complex 8 yielded a short-circuit photocurrent density of 17 +/- 0.5 mA/cm(2), the open-circuit voltage was 720 +/- 50 mV, and the fill factor was 0.72 +/- 0.05, corresponding to an overall conversion efficiency of 8.8 +/- 0.5%.  相似文献   

3.
Reactions between the Os(VI)-nitrido complexes, [OsVI(L2)(Cl)3(N)] (L2 = 2,2'-bipyridine (bpy) ([1]), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and 4,7-diphenyl-1,10-phenanthroline (Ph2phen)), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) in dry CH3CN at 60 degrees C under N2 give the corresponding Os(IV)-azidoimido complexes, [OsIV(L2)(Cl)3(NN3)]- (L2 = bpy = [2]-, L2 = Me2bpy = [3]-, L2 = phen = [4]-, and L2 = Ph2phen = [5]-) as their PPN+ salts. The formulation of the N42- ligand has been substantiated by 15N-labeling, IR, and 15N NMR measurements. Hydroxylation of [2]- at Nalpha with O<--NMe3.3H2O occurs to give the Os(IV)-azidohydroxoamido complex, [OsIV(bpy)(Cl)3(N(OH)N3)] ([6]), which, when deprotonated, undergoes dinitrogen elimination to give the Os(II)-dinitrogen oxide complex, [OsII(bpy)(Cl)3(N2O)]- ([7]-). They are the first well-characterized examples of each kind of complex for Os.  相似文献   

4.
A series of CN-bridged trinuclear Ru complexes of the general structure [RuL2(μ-(CN)Ru(CN)L2′)2] where L is 2,2′-bipyridine-4,4′-dicarboxylic acid and L′ is 2,2′-bipyridine ( 1 )2,2′-bipyridine-4,4′-dicarboxylic acid ( 2 ), 4,4′-dimethyl-2,2′-bipyridine ( 3 ), 4,4′-diphenyl-2,2′-bipyridine ( 4 ), 1,10-phenanthroline ( 5 ), and bathophenanthrolinedisulfonic acid ( 6 ) have been synthesized, and their spectral and electrochemical properties investigated. The two carboxylic functions on the 2,2′-bipyridine ligand L serve as interlocking groups through which the dye is attached at the surface of TiO2 films having a specific surface texture. The role of these interlocking groups is to provide strong electronic coupling between the π* orbital of the 2,2′-bipyridine and the 3d-wave-function manifold of the conduction band of the TiO2, allowing the charge injection to proceed at quantum yields close to 100 %. The charge injection and recombination dynamics have been studied with colloidal TiO2, using laser photolysis technique in conjunction with time-resolved optical spectroscopy. Photocurrent action spectra obtained from photo-electrochemical experiments with these trinuclear complexes cover a very broad range in the visible, making them attractive candidates for solar light harvesting. Monochromatic incident photon-to-current conversion efficiencies are strikingly high exceeding 80% in some cases. Performance characteristics of regenerative cells operating with these trinuclear complexes and ethanolic triiodide/iodide redox electrolyte have been investigated. Optimal results were obtained with complex 1 which gave a fill factor of 75 % and a power conversion efficiency of 11.3% at 520 nm.  相似文献   

5.
The reaction of AgCN with UO2, 4,4'-bipy, and phosphoric acid in water at 160 degrees C under autogeneously generated pressure results in the formation of [Ag(4,4'-bipy)]2[(UO2)2H3(PO4)3] (AgUP-1). Ag(2,2'-bipy)(UO2)2(HPO4)(PO4) (AgUP-2) has been prepared from the hydrothermal reaction (at 180 degrees C) of KAg(CN)2 with UO2(C2H3O2)2.2H2O and 2,2'-bipy. [Zn(2,2'-bipy)]2[UO2(HPO4)3] (ZnUP-1) was isolated from the hydrothermal reaction of UO2, 2,2'-bipyridyl, Zn(CN)2, and H3PO4. Single crystal X-ray diffraction experiments reveal that the structure of AgUP-1 consists of 2infinity[(UO2)2H3(PO4)3]2- expanded autunite-like layers in the [ac] plane, separated by 1infinity[Ag(4,4'-bipy)]+ chains of two-coordinate Ag+ bridged by 4,4'-bipy. The structure of AgUP-2 is composed of chains of edge-sharing UO7 pentagonal bipyramids that are linked by phosphate anions into 2infinity[(UO2)2(HPO4)(PO4)]1- sheets with the beta-uranophane topology that extend in the [ab] plane. Both sides of the sheets are decorated by [Ag(2,2'-bipy)]+ units, where the Ag+ cations are found in distorted trigonal planar environments. The structure of ZnUP-1 is 1D and consists of UO7 pentagonal bipyramids that are connected by phosphate anions that also bind four-coordinate zinc(II) to the periphery of the chains and five-coordinate zinc within the chains. Intense fluorescence from these compounds was observed.  相似文献   

6.
We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF(6))(2), [1](PF(6))(2)-[5](PF(6))(2), and [{Ru(L-L)(2)}(2)(μ-tape)](PF(6))(4), [6](PF(6))(4)-[10](PF(6))(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4'5,5'-tetramethyl-2,2'-bipyridine)}, respectively, were synthesized. The X-ray structures of tape·2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF(6))(2)·0.5CH(3)CN·0.5toluene, [Ru(dmbpy)(2)(tape)](PF(6))(2)·2toluene and [Ru(dtbbpy)(2)(tape)](PF(6))(2)·3acetone·0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(ii) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazin (tpphz) species.  相似文献   

7.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

8.
A novel heteroleptic ruthenium complex carrying a heteroaromatic-4,4'-pi-conjugated 2,2'-bipyridine [Ru(II)LL'(NCS)(2)] (L = 4,4'-bis[(E)-2-(3,4-ethylenedioxythien-2-yl)vinyl]-2,2'-bipyridine, L' = 4,4'-(dicarboxylic acid)-2,2'-bipyridine) was synthesized and used in dye-sensitized solar cells, yielding photovoltaic efficiencies of 9.1% under standard global AM 1.5 sunlight.  相似文献   

9.
A phenomenally high molar extinction coefficient heteroleptic ruthenium(II) complex [Ru(4,4'-carboxylic acid-2,2'-bipyridine)(4,4'-(4-{4-methyl-2,5-bis[3-methylbutoxy]styryl}-2,5-bis[3-methylbutoxy]-2,2'-bipyridine)(NCS) 2] ( DCSC13) was synthesized by incorporating donor-acceptor ligands. The absorption spectrum of the DCSC13 sensitizer is dominated by metal-to-ligand charge-transfer transitions (MLCT) in the visible region, with absorption maxima appearing at 442 and 554 nm. The lowest MLCT absorption bands are red-shifted, and the molar extinction coefficients of these bands are significantly higher at 72,100 and 30,600 M(-1) cm(-1), respectively, when compared to those of the analogous [Ru(4,4'-carboxylic acid-2,2'-bipyridine)(4,4'-dimethyl-2,2'-bipyridine)(NCS)2] (N820) sensitizer. The DCSC13 complex, when anchored on nanocrystalline TiO 2 films, exhibited increased short-circuit photocurrent and consequent power-conversion efficiency when compared with the N820 sensitizer.  相似文献   

10.
The half-sandwich complexes [(eta5-C5H5)RuCl(DPEphos)] (1) and [{(eta6-p-cymene)RuCl2}2(mu-DPEphos)] (2) were synthesized by the reaction of bis(2-(diphenylphosphino)phenyl) ether (DPEphos) with a mixture of ruthenium trichloride trihydrate and cyclopentadiene and with [(eta6-p-cymene)RuCl2]2, respectively. Treatment of DPEphos with cis-[RuCl2(dmso)4] afforded fac-[RuCl2(kappa3-P,O,P-DPEphos)(dmso)] (3). The dmso ligand in 3 can be substituted by pyridine, 2,2'-bipyridine, 4,4'-bipyridine, and PPh3 to yield trans,cis-[RuCl2(DPEphos)(C5H5N)2] (4), cis,cis-[RuCl2(DPEphos)(2,2'-bipyridine)] (5), trans,cis-[RuCl2(DPEphos)(mu-4,4'-bipyridine)]n (6), and mer,trans-[RuCl2(kappa3-P,P,O-DPEphos)(PPh3)] (7), respectively. Refluxing [(eta6-p-cymene)RuCl2]2 with DPEphos in moist acetonitrile leads to the elimination of the p-cymene group and the formation of the octahedral complex cis,cis-[RuCl2(DPEphos)(H2O)(CH3CN)] (8). The structures of the complexes 1-5, 7, and 8 are confirmed by X-ray crystallography. The catalytic activity of these complexes for the hydrogenation of styrene is studied.  相似文献   

11.
A heteroleptic polypyridyl ruthenium complex, cis-Ru(4,4'-bis(5-octylthieno[3,2-b]thiophen-2-yl)-2,2'-bipyridine)(4,4'-dicarboxyl-2,2'-bipyridine)(NCS)2, with a high molar extinction coefficient of 20.5 x 10(3) M(-1) cm(-1) at 553 nm has been synthesized and demonstrated as a highly efficient sensitizer for a dye-sensitized solar cell, giving a power conversion efficiency of 10.53% measured under an irradiation of air mass 1.5 global (AM 1.5G) full sunlight.  相似文献   

12.
Han WS  Han JK  Kim HY  Choi MJ  Kang YS  Pac C  Kang SO 《Inorganic chemistry》2011,50(8):3271-3280
We prepared a series of new heteroleptic ruthenium(II) complexes, Ru(NCS)(2)LL' (3a-3e), where L is 4,4'-di(hydroxycarbonyl)-2,2'-bipyridine and L' is 4,4'-di(p-X-phenyl)-2,2'-pyridine (X = CN (a), F (b), H (c), OMe (d), and NMe(2) (e)), in an attempt to explore the structure-activity relationships in their photophysical and electrochemical behavior and in their performance in dye-sensitized solar cells (DSSCs). When substituent X is changed from electron-donating NMe(2) to electron-withdrawing CN, the absorption and emission maxima reveal systematic bathochromic shifts. The redox potentials of these dyes are also significantly influenced by X. The electronic properties of the dyes were theoretically analyzed using density functional theory calculations; the results show good correlations with the experimental results. The solar-cell performance of DSSCs based on dye-grafted nanocrystalline TiO(2) using 3a-3e and standard N3 (bis[(4,4'-carboxy-2,2'-bipyridine)(thiocyanato)]ruthenium(II)) were compared, revealing substantial dependences on the dye structures, particularly on the remote substituent X. The 3d-based device showed the best performance: η = 8.30%, J(SC) = 16.0 mA·cm(-2), V(OC) = 717 mV, and ff = 0.72. These values are better than N3-based device.  相似文献   

13.
A new ruthenium(II) complex, tetrabutylammonium [ruthenium (4-carboxylic acid-4'-carboxylate-2,2'-bipyridine)(4,4'-di(2-(3,6-dimethoxyphenyl)ethenyl)-2,2'-bipyridine)(NCS)(2)] (N945H), was synthesized and characterized by analytical, spectroscopic, and electrochemical techniques. The absorption spectrum of the N945H sensitizer is dominated by metal-to-ligand charge-transfer (MLCT) transitions in the visible region, with the lowest allowed MLCT bands appearing at 25 380 and 18 180 cm(-1). The molar extinction coefficients of these bands are 34 500 and 18 900 M(-1) cm(-1), respectively, and are significantly higher when compared to than those of the standard sensitizer cis-dithiocyanatobis(4,4'-dicarboxylic acid-2,2'-bipyridine)ruthenium(II). An INDO/S and density functional theory study of the electronic and optical properties of N945H and of N945 adsorbed on TiO(2) was performed. The calculations point out that the top three frontier-filled orbitals have essentially ruthenium 4d (t(2g) in the octahedral group) character with sizable contribution coming from the NCS ligand orbitals. Most critically the calculations reveal that, in the TiO(2)-bound N945 sensitizer, excitation directs charge into the carboxylbipyridine ligand bound to the TiO(2) surface. The photovoltaic data of the N945 sensitizer using an electrolyte containing 0.60 M butylmethylimidazolium iodide, 0.03 M I(2), 0.10 M guanidinium thiocyanate, and 0.50 M tert-butylpyridine in a mixture of acetonitrile and valeronitrile (volume ratio = 85:15) exhibited a short-circuit photocurrent density of 16.50 +/- 0.2 mA cm(-2), an open-circuit voltage of 790 +/- 30 mV, and a fill factor of 0.72 +/- 0.03, corresponding to an overall conversion efficiency of 9.6% under standard AM (air mass) 1.5 sunlight, and demonstrated a stable performance under light and heat soaking at 80 degrees C.  相似文献   

14.
New hybrid complexes of polypyridyl ruthenium and pyridylporphyrins have been prepared by the coordination of pyridyl nitrogens to the ruthenium centers. A 1:4 hybrid complex, [{Ru(bpy)(trpy)}4(mu4-H2Py4P)]8+ ([1]8+) (bpy = 2,2'-bipyridine; trpy = 2,2':6',2"-terpyridine; H2Py4P = 5,10,15,20-tetra(4-pyridyl)porphyrin), has been characterized by the single-crystal X-ray diffraction method. A 1:1 complex, [{Ru(bpy)(trpy)}(H2PyT3P)]2+ ([2]2+) (H2PyT3P = 5-(4-pyridyl)tritolylporphyrin) has also been prepared. The Soret band of the porphyrin ring shifts to longer wavelength with some broadening, the extent of the shift being larger for [1]8+. Cyclic voltammograms of the two complexes show simple overlap of the component redox waves. The complexes are weakly emissive at room temperature, which becomes stronger at lower temperatures. While [1]8+ at >140 K and [2]2+ at 77-280 K show only porphyrin fluorescence, [1]8+ at <140 K shows ruthenium and porphyrin phosphorescence, in addition to the porphyrin fluorescence.  相似文献   

15.
Three novel cyanide-bridged heterobimetallic coordination polymers have been synthesized by hydrothermal routes, in superheated water solutions, by using K3[Co(CN)6], NiCl2.6H2O, and alpha-diimine ligands: [Ni(CN)4Co(phen)] (1; phen = 1,10-phenanthroline), [Ni(CN)4Co(2,2'-bipy)] (2; 2,2'-bipy = 2,2'-bipyiridine), and [Ni(CN)4Co(2,2'-bipy)2] (3). The isostructural compounds 1 and 2 contain a two-dimensional network with Co(II) centers octahedrally coordinated by one chelating 2,2'-bipy ligand and four cyanide groups of four distinct [Ni(CN)4]2-, through crystallographically equivalent, bridging units. Compound 3 contains one-dimensional zigzag chains in which the Co(II) ion is coordinated by two chelating 2,2'-bipy ligands and two cyanides from two different [Ni(CN)4]2- units cis to each other. These compounds have been fully characterized by single-crystal or unconventional powder X-ray diffraction analyses and variable-temperature magnetic measurements.  相似文献   

16.
The imidazolium functionalized bipyridine compounds, {4,4'-bis[7-(2,3-dimethylimidazolium)heptyl]-2,2'-bipyridine}(2+) ([BIHB](2+)) and {4,4'-bis[(1,2-dimethylimidazolium)methyl]-2,2'-bipyridine}(2+) ([BIMB](2+)), were prepared and used as Rh nanoparticle stabilizers. The dispersed Rh nanoparticles were used as catalysts in the biphasic hydrogenation of various arene substrates. The catalytic activity was strongly influenced by the stabilizer employed and followed the trend [BIHB](2+) > bipy > [BIMB](2+). The steric and electronic characteristics of the imidazolium functionalized bipyridine ligands were assessed via the synthesis of rhenium carbonyl complexes, which facilitated the rationalization of the catalytic properties of the nanoparticles.  相似文献   

17.
Two new heteroleptic ruthenium(II) photosensitizers that contains 2,2';6,2'-terpyridine with extended π-conjugation with donor groups, a 4,4'-dicarboxylic acid-2,2'-bipyridine anchoring ligand and a thiocyanate ligand have been designed, synthesized and fully characterized by CHN, mass spectrometry, UV-vis and fluorescence spectroscopies and cyclic voltammetry. The new sensitizers have either 3,5-di-tert-butyl phenyl (m-BL-5) or triphenylamine (m-BL-6) groups, where the molar extinction coefficient of both the sensitizers is higher than the analogous ruthenium dyes. Both the sensitizers were tested in dye-sensitized solar cells using two different redox electrolytes.  相似文献   

18.
The reaction of a C2-symmetric diiodo compound, 1,4-dideoxy-1,4-diiodo-2,3,-O-isopropyliden-L-threitole, with [K([18]crown-6)]P(CN)2 led to the generation of a corresponding bidentate dicyanophosphorus derivative. The in situ reaction with excess methanol and phenol yielded the corresponding bidentate dimethyl- and diphenylphosphonites, respectively. The isolated liquids were characterized by multinuclear NMR spectroscopy, elemental analysis, and mass spectrometry. The bidentate diphenylphosphonite ligand (a diphenoxyphosphane derivative) represents one of the very few functional bidentate phosphane derivatives: a DIOP [(2,2-dimethyl-1,3-dioxolane-4,5-diyl)bis(methylene)]bis(diphenylphosphane) modification, in which the phenyl groups at the phosphorus atoms are replaced by functional phenoxy groups. Treatment of the bidentate diphenylphosphonite derivative with C6F5MgBr and p-C5NF4MgBr allowed the isolation and full characterization of the comparable bidentate bis(pentafluorophenyl) and bis(p-tetrafluoropyridyl)phosphanes. The ligand properties of the novel bidentate ligand systems were evaluated through the synthesis and vibrational investigation of their tetracarbonyl-molybdenum and cyclopentadienyl-iron complexes. The pi acidity of the synthesized ligands increases in the order methoxy-相似文献   

19.
Dinuclear gold(I) complexes [mu-(4,4'-CN-R-NC){Au(C6F4OC4H9)}2] [R = 1,4-phenylene, n = 8; R = 4,4'-biphenylene, 2,2'-dichloro-4,4'-biphenylene, 2,2'-dimethyl-4,4'-biphenylene, n = 4,6,8,10] have been prepared and their liquid crystal behavior and optical properties studied. Although the free ligands are not mesomorphic, all the gold(I) derivatives described, except the phenylisonitrilegold(I) derivative [mu-(1,4-CN-C6H4-NC){Au(C6F4OC8H17)}2], display liquid crystal behavior, giving rise to a nematic mesophase. The transition temperatures decrease in the order 4-4'-biphenylene > 2,2'-dichloro-4-4'-biphenylene > 2,2'dimethyl-4-4'-biphenylene. All compounds show photoluminescence in the solid state and in solution. The single-crystal X-ray diffraction structures of [mu-(4,4'-CN-R-NC){Au(C6F4OCnH2n+1)}2] (R = 4-4'-biphenylene and 2,2'-dichloro-4-4'-biphenylene) have been determined confirming the rodlike structure of the molecule, with a linear coordination around the gold atoms. There are Au...Au interactions in the 2,2'-dichlorobiphenyl derivative but not in the 4-4'-biphenyl compound.  相似文献   

20.
Mononuclear ruthenium complexes and dinuclear Ru...Pd complexes having a series of 2,2'-bipyrimidine ligands, [(bpy)2Ru(Ln)]2+ [Ln = 2,2'-bipyrimidine (L1), 5,5'-dimethyl-2,2'-bipyrimidine (L2), 5,5'-dibromo-2,2'-bipyrimidine (L3), 4,4'-dimethyl-2,2'-bipyrimidine (L4), and 4,4',6,6'-tetramethyl- 2,2'-bipyrimidine (L5)] and [(bpy)2Ru(Ln)PdL]m+ [Ln = L1-L3; PdL = PdMeCl (m = 2) and PdMe(solvent) (m = 3)], are prepared, and the obtained complexes are characterized by means of spectroscopic and crystallographic methods. Introduction of the substituents on the bipyrimidine ligands led to the substantial differences in their electrochemical and photophysical properties. Density functional theory calculations have been performed to understand the substituent effect on the ground-state molecular orbital energy level. Reactivity studies on the catalytic dimerization of alpha-methylstyrene revealed that the Pd complex having a Br-substituted bipyrimidine ligand were much more active than those of the corresponding Pd complexes having methyl-substituted or nonsubstituted bipyrimidine ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号