首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Boron dipyrromethene (BODIPY) is known to have a high quantum yield (phi) of fluorescence in aqueous solution but has not been utilized much for biological applications, compared to fluorescein. We developed 8-(3,4-diaminophenyl)-2,6-bis(2-carboxyethyl)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (DAMBO-P(H)), based on the BODIPY chromophore, as a highly sensitive fluorescence probe for nitric oxide (NO). DAMBO-P(H) had a low phi value of 0.002, whereas its triazole derivative (DAMBO-P(H)-T), the product of the reaction of DAMBO-P(H) with NO, fluoresced strongly (phi = 0.74). The change of the fluorescence intensity was found to be controlled by an intramolecular photoinduced electron transfer (PeT) mechanism. The strategy for development of DAMBO-P(H) was as follows: (1) in order to design a highly sensitive probe of NO, the reactivity of o-phenylenediamine derivatives as NO-reactive moieties was examined using 4,5-diaminofluorescein (DAF-2, a widely used NO fluorescence probe), (2) in order to avoid pH-dependency of the fluorescence intensity, the PeT process was controlled by modulating the spectroscopic and electrochemical properties of BODIPY chromophores according to the Rehm-Weller equation based on measurement of excitation energies of chromophores, ground-state reduction potentials of PeT acceptors (BODIPYs), and calculation of the HOMO energy level of the PeT donor (o-phenylenediamine moiety) at the B3LYP/6-31G level, (3) in order to avoid quenching of fluorescence by stacking of the probes and to obtain probes suitable for biological applications, hydrophilic functional groups were introduced. This strategy should be applicable for the rational design of other novel and potentially useful bioimaging fluorescence probes.  相似文献   

2.
The syntheses and photophysical characterization of ZP9, 2-{2-chloro-6-hydroxy-3-oxo-5-[(2-{[pyridin-2-ylmethyl-(1H-pyrrol-2-ylmethyl)amino]methyl}phenylamino)methyl]-3H-xanthen-9-yl}benzoic acid, and ZP10, 2-{2-chloro-6-hydroxy-5-[(2-{[(1-methyl-1H-pyrrol-2-ylmethyl)pyridin-2-ylmethylamino]methyl}phenylamino)methyl]-3-oxo-3H-xanthen-9-yl}benzoic acid, two asymmetrically derivatized fluorescein-based dyes, are described. These sensors each contain an aniline-based ligand moiety functionalized with a pyridyl-amine-pyrrole group and have dissociation constants for Zn(II) in the sub-micromolar (ZP9) and low-micromolar (ZP10) range, which we define as "midrange". They give approximately 12- (ZP9) and approximately 7-fold (ZP10) fluorescence turn-on immediately following Zn(II) addition at neutral pH and exhibit improved selectivity for Zn(II) compared to the di-(2-picolyl)amine-based Zinpyr (ZP) sensors. Confocal microscopy studies indicate that such asymmetrical fluorescein-based probes are cell permeable and Zn(II) responsive in vivo.  相似文献   

3.
Fluorescence properties of fluorescein-based probes are shown to be finely controlled by the rate of photoinduced electron transfer from the benzoic acid moiety (electron donor) to the singlet excited state of the xanthene moiety (electron acceptor fluorophore). The occurrence of photoinduced electron transfer is clearly evidenced by transient absorption spectra showing bands due to the radical cation of the electron donor moiety and the radical anion of the xanthene moiety, observed in laser flash photolysis experiments. The photoinduced electron transfer rates and the rates of back electron transfer follow the Marcus parabolic dependence of electron transfer rate on the driving force. Such a dependence provides for the first time a quantitative basis for a rational design principle which has high efficiency in modulating fluorescence properties of fluorescein-based probes.  相似文献   

4.
景旭  刘福臣  张晓琳  何成 《无机化学学报》2011,27(10):2071-2075
将含有8-氨基喹啉与荧光素衍生物缩合的席夫碱QZ1与铕髥的TTA(噻吩基三氟乙酰丙酮)化合物作为基本原料合成了新的铕髥-荧光素化合物Eu-QZ1,并对其进行了光谱表征。化合物Eu-QZ1在470 nm光的激发下产生荧光素的特征绿色荧光(530 nm)。在从碱到酸(pH从9.0到6.0)滴定过程中该荧光的强度增强了接近5倍,其pKa值计算为7.30。在370 nm光的激发下,Eu-QZ1发射稀土铕髥离子的特征红色荧光(主峰位于612 nm)。在从酸到碱(pH从5.5到8.5)滴定过程中,该荧光的强度增强了接近10倍,其pKa值计算为7.39。这些结果表明Eu-QZ1是1个高灵敏度双荧光响应的pH探针。细胞试验表明Eu-QZ1具有良好的细胞通透性,能够在红光和绿光两个位置标记海拉细胞中的pH范围。  相似文献   

5.
A ratiometric measurement, namely, simultaneous recording of the fluorescence intensities at two wavelengths and calculation of their ratio, allows greater precision than measurements at a single wavelength, and is suitable for cellular imaging studies. Here we describe a novel method of designing probes for ratiometric measurement of hydrolytic enzyme activity based on switching of fluorescence resonance energy transfer (FRET). This method employs fluorescent probes with a 3'-O,6'-O-protected fluorescein acceptor linked to a coumarin donor through a linker moiety. As there is no spectral overlap integral between the coumarin emission and fluorescein absorption, the fluorescein moiety cannot accept the excitation energy of the donor moiety and the donor fluorescence can be observed. After cleavage of the protective groups by hydrolytic enzymes, the fluorescein moiety shows a strong absorption in the coumarin emission region, and then acceptor fluorescence due to FRET is observed. Based on this mechanism, we have developed novel ratiometric fluorescent probes (1-3) for protein tyrosine phosphatase (PTP) activity. They exhibit a large shift in their emission wavelength after reaction with PTPs. The fluorescence quenching problem that usually occurs with FRET probes is overcome by using the coumarin-cyclohexane-fluorescein FRET cassette moiety, in which close contact of the two dyes is hindered. After study of their chemical and kinetic properties, we have concluded that compounds 1 and 2 bearing a rigid cyclohexane linker are practically useful for the ratiometric measurement of PTPs activity. The design concept described in this paper, using FRET switching by spectral overlap integral and a rigid link that prevents close contact of the two dyes, should also be applicable to other hydrolytic enzymes by introducing other appropriate enzyme-cleavable groups into the fluorescein acceptor.  相似文献   

6.
We demonstrate herein a new protein conformation indicator based on biarsenical fluorescein with an extended benzoic acid moiety. The present indicator is reactive to a genetically introduced tetracysteine motif (Cys-Cys-Xaa-Xaa-Cys-Cys, where Xaa is a noncysteine amino acid) of proteins. Compared to the original biarsenical fluorescein (FlAsH) and the biarsenical Nile red analogue (BArNile), the present indicator exhibited larger fluorescence intensity changes in response to Ca(2+)-induced conformational rearrangements of calmodulin. A calculation of the highest occupied molecular orbital (HOMO) level of the benzoic acid moiety of the indicator molecule supports possible involvement of a photoinduced electron transfer (PET) process. These results indicate that the present indicator is useful for sensitive detection of protein conformational changes.  相似文献   

7.
Thiophene moieties were incorporated into previously described Zinspy (ZS) fluorescent Zn(II) sensor motifs (Nolan, E. M.; Lippard, S. J. Inorg. Chem. 2004, 43, 8310-8317) to provide enhanced fluorescence properties, low-micromolar dissociation constants for Zn(II), and improved Zn(II) selectivity. Halogenation of the xanthenone and benzoate moieties of the fluorescein platform systematically modulates the excitation and emission profiles, pH-dependent fluorescence, Zn(II) affinity, and Zn(II) complexation rates, offering a general strategy for tuning multiple properties of xanthenone-based metal ion sensors. Extensive biological studies in cultured cells and primary neuronal cultures demonstrate 2-{6-hydroxy-3-oxo-4,5-bis[(pyridin-2-ylmethylthiophen-2-ylmethylamino)methyl]-3H-xanthen-9-yl}benzoic acid (ZS5) to be a versatile imaging tool for detecting Zn(II) in vivo. ZS5 localizes to the mitochondria of HeLa cells and allows visualization of glutamate-mediated Zn(II) uptake in dendrites and Zn(II) release resulting from nitrosative stress in neurons.  相似文献   

8.
Rational design strategies based on practical fluorescence modulation mechanisms would enable us to rapidly develop novel fluorescence probes for target molecules. Here, we present a practical and general principle for modulating the fluorescence properties of fluorescein. We hypothesized that (a) the fluorescein molecule can be divided into two moieties, i.e., the xanthene moiety as a fluorophore and the benzene moiety as a fluorescence-controlling moiety, even though there is no obvious linker structure between them, and (b) the fluorescence properties can be modulated via a photoinduced electron transfer (PeT) process from the excited fluorophore to a reducible benzene moiety (donor-excited PeT; d-PeT). To evaluate the relationship between the reduction potential of the benzene moiety and the fluorescence properties, we designed and synthesized various derivatives in which the reduction potential of the benzene moiety was fine tuned by introducing electron-withdrawing groups onto the benzene moiety. Our results clearly show that the fluorescence properties of fluorescein derivatives were indeed finely modulated depending upon the reduction potential of the benzene moiety. This information provides a basis for a practical strategy for rational design of novel functional fluorescence probes.  相似文献   

9.
The cell-permeable anthracene analog diethyl-3-3'-(9,10-anthracenediyl)bis acrylate (DADB) was recently identified as a highly selective probe for singlet oxygen ((1)O(2)). Now, we show that DADB can be used to monitor (1)O(2) formation in cell culture during photodynamic therapy. An atypical property of DADB is that fluorescence emission is decreased upon oxidation. Using photosensitizers that target specific organelles, we determined that DADB could detect (1)O(2) whether formed in ER, mitochondria or lysosomes. DADB fluorescence was not, however, significantly altered when the photosensitizing agent was the palladium bacteriopheophorbide termed WST11, an agent reported to produce mainly oxygen radicals upon irradiation in an aqueous environment, whereas singlet oxygen was formed in organic solvents.  相似文献   

10.
Ficoll has been widely used as a crowding agent to mimic intracellular media because it is believed to be noninteracting and is composed of mixed sizes such that smaller and larger diffusing solutes can be studied. Due to the interest that the fluorescent dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II) as a fluorometric probe of phosphate ions in intracellular media could generate, we describe the spectral characteristics of the system TG-II-Ficoll in aqueous solution by means of absorption spectroscopy, steady-state fluorescence, time-resolved fluorescence, time-resolved emission spectroscopy, and fluorescence lifetime correlation spectroscopy. The spectral characteristics found are consistent with the formation of an adsorption complex on the surface of Ficoll, probably due to hydrogen bonding between TG-II and Ficoll. In addition, the diffusion coefficient calculated for the association was similar to the diffusion coefficient previously recovered for Ficoll in the same experimental conditions. Therefore, our overall data clearly demonstrate that Ficoll is not an inert crowding agent when in the presence of fluorescein derivative dyes.  相似文献   

11.
QZ1, 2-[2-chloro-6-hydroxy-3-oxo-5-(quinolin-8-ylaminomethyl)-3H-xanthen-9-yl]benzoic acid, and QZ2, 2-[6-hydroxy-3-oxo-4,5-bis-(quinolin-8-ylaminomethyl)-3H-xanthen-9-yl]benzoic acid, two fluorescein-based dyes derivatized with 8-aminoquinoline, have been prepared and their photophysical, thermodynamic, and zinc-binding kinetic properties determined. Because of their low background fluorescence and highly emissive Zn(II) complexes, QZ1 and QZ2 have a large dynamic range, with approximately 42- and approximately 150-fold fluorescence enhancements upon Zn(II) coordination, respectively. These dyes have micromolar K(d) values for Zn(II) and are selective for Zn(II) over biologically relevant concentrations of the alkali and alkaline earth metals. The Zn(II) complexes also fluoresce brightly in the presence of excess Mn(II), Fe(II), Co(II), Cd(II), and Hg(II), offering improved specificity for Zn(II) over di(2-picolyl)amine-based Zn(II) sensors. Stopped-flow kinetic investigations indicate that QZ1 and QZ2 bind Zn(II) with k(on) values of (3-4) x 10(6) M(-1) s(-1), compared to (6-8) x 10(5) M(-1) s(-1) for select ZP (Zinpyr) dyes, at 4.3 degrees C. Dissociation of Zn(II) from QZ1 and QZ2 occurs with k(off) values of 150 and 160 s(-1), over 5 orders of magnitude larger than those for ZP probes, achieving reversibility on the biological (millisecond) time scale. Laser scanning confocal and two-photon microscopy studies reveal that QZ2 is cell-permeable and Zn(II)-responsive in vivo. Because of its weaker affinity for Zn(II), QZ2 responds to higher concentrations of intracellular Zn(II) than members of the ZP family, illustrating that binding affinity is an important parameter for Zn(II) detection in vivo.  相似文献   

12.
Eight phenanthrenes, 7-carboxy-2-hydroxy-1-methyl-5-vinyl-phenanthrene (1); 2,7-dihydroxy-1-methyl-5-aldehyde-9,10-dihydrophenanthrene (2); dehydroeffusol (3); dehydrojuncusol (4); 7-carboxy-2-hydroxy-1-methyl-5-vinyl-9,10-dihydrophenanthrene (5); 8-carboxy-2-hydroxy-1-methyl-5-vinyl-9,10-dihydrophenanthrene (6); effusol (7) and juncusol (8), were isolated from the aerial part of Juncus effusus. Compounds 1 and 2 were identified as new constituents. Compounds 7 and 8 showed anxiolytic and sedative activities.  相似文献   

13.
Solvothermal reaction of lanthanide(Ⅲ) salts with fluorescein (2-(6-hydroxy3-oxo-3H-xanthen-9-yl)benzoic acid) led to a series of new coordination polymers {[Ln(C 20 H 11 O 5)(C 20 H 10 O 5)(H 2 O)]·DMF} n (Ln=Er,Eu,Gd,Tb,Tm,Yb).The PXRD patterns of the complexes indicate they are isomorphous.The structure of complex {[Er(C 20 H 11 O 5)(C 20 H 10 O 5)(H 2 O)]·DMF} n has been determined by single-crystal X-ray diffraction,revealing a 2D framework in which DMF molecules were filled between the layers.The crystal structure belongs to the triclinic system,space group P1,with a=12.107(4),b=12.232(4),c=13.273(4),α=68.005(7),β=88.024(11),γ=77.451(8)°,V=1776.7(9) 3,Z=2,D c=1.720 g/cm 3,μ=2.434 mm-1,F(000)=918,R int=0.0584,T=293(2) K,the final R=0.0621 and wR=0.1501.  相似文献   

14.
Li  Shaoxin  Zhao  Bing  Kan  Wei  Wang  Liyan  Song  Bo  Chen  Shuwen 《Research on Chemical Intermediates》2018,44(1):491-502
Research on Chemical Intermediates - A novel pH fluorescence probe (PIF), derived from phenanthro[9,10-d]imidazole bound to the fluorescein, is designed and synthesized based on the intramolecular...  相似文献   

15.
Various polyesters having pendant (9-anthryl)methyl groups were prepared from 2-(9-anthryl)methylpropane-1,3-diol and the esters or chlorides of dicarboxylic acids. These polyesters are poly[2-(9-anthryl)-methylpropane-1,3-diyl-oxy-(9-anthryl)methylmalonyl-oxy](PA-1A), poly-[2-9-anthrylmethylpropane-1,3-diyl-oxysuccinyloxy](PA-2), poly-[2-9-anthrylmethylpropane-1,3-diyl-oxyadipyloxy](PA-4), poly[2-(9-anthryl)methylpropane-1,3-diyl-oxysebacyloxy] (PA-8), poly[2-(9-anthryl)methylpropane-1,3-diyl-oxy-(1-naphthyl)methylmalonyloxy](PA-1N), and poly[2-(9-anthryl)methylpropane-1,3-diyl-oxyterephthaloyloxy](PA-Ph). Although the absorption spectrum of the anthryl group is not influenced by the change in the environment in which the anthryl group is located, the fluorescence spectra show characteristic change reflecting the environment around the chromophore. Dimer, aggregates, or excimer fluorescence of anthryl groups and energy transfer from naphthyl to anthryl groups for PA-1N were discussed. The rates of photodimerization of anthryl groups determined spectroscopically in dilute solutions for these polyesters and their monomer model compound(1,3-diacetoxy-2(9-anthryl)methylpropane) (MA), were in the following order; PA-8 > PA-4 > PA-1A > PA-2 > PA-Ph > MA. The effects of polymer structure on the photoreaction were discussed on the basis of information on molecular interactions obtained by fluorescence spectroscopy. The fraction of intramolecular cyclization was estimated from dependence of the rate of photoreaction on the concentration of the polyesters. When anthryl groups are linked by a long, flexible polymethylene chain (PA-8), intramolecular process predominates whereas intermolecular dimerization proceeds almost exclusively for a rodlike molecule(PA-Ph). These results are discussed from the viewpoint of the structure–functionality relationship in polymeric systems.  相似文献   

16.
We have developed novel fluorescence probes for sodium cation based on photoinduced electron transfer (PeT). In this study, we rationally designed new probes and succeeded in achieving fluorescence enhancement upon sodium ion binding by reducing the HOMO energy level of the chelator group within the probe molecule. Our new probes show low pH dependency, possibly because of their simple structures. Our results confirm the value of rational probe design based on PeT.  相似文献   

17.
The production of singlet oxygen by merocyanine 540 was studied in dimyristoyl-phosphatidylcholine liposomes using two singlet oxygen probes: 9,10-anthracenedipropionic acid (water soluble) and 9,10-dimethylanthracene (liposoluble). Upper and lower limits of singlet oxygen quantum yield for bound merocyanine 540 were determined to be 0.055 and 0.015 respectively. The diffusion characteristics of singlet oxygen were examined using the isotropic enhancement effect of D2O and the inhibitory effect of sodium azide. It was shown that 1O2 spent more than 87% of its lifetime in a vesicle environment. When the singlet-reacting substrate and the dye were both located in the bilayer, approximately 40% of the singlet oxygen remained in the liposomes where it was originally generated.  相似文献   

18.
3',6'-Bis(diphenylphosphinyl)fluorescein (PF-1) was synthesized as a highly selective and sensitive fluorescent probe for imaging O(2) (.-) in living cells. The design strategy for the probe was based on the nucleophilic mechanism of O(2) (.-) to mediate deprotection of this probe to give fluorescein. Upon reaction with O(2) (.-), the probe exhibits a strong fluorescence response and high selectivity for O(2) (.-) over other reactive oxygen species and some biological compounds. The phosphinate-based probe, as a new fluorescent reagent, is cell-permeable and can detect micromolar changes of O(2) (.-) concentrations by using confocal microscopy in living cells. The unique combination of good selectivity, high sensitivity, good water solubility, and rapid reactivity establishes the potential value of the probe for facilitating investigations of the generation, metabolism, and mechanisms of superoxide-mediated cellular homeostasis and injury.  相似文献   

19.
Free-probe fluorescence of light-up probes.   总被引:1,自引:0,他引:1  
The fluorescence enhancement of light-up probes (thiazole orange (TO) conjugated peptide nucleic acids (PNAs)) upon hybridization to target nucleic acid depends on the probe sequence, mainly due to large variations in free-probe fluorescence. Here we study three probes where the fluorescence in free state varies more than 50-fold. We find that this variation is due to a fraction that has TO intramolecularly "back-bound" to the PNA bases. The intramolecular affinity constant for this unimolecular interaction was determined by temperature titrations using absorption spectroscopy, and the fluorescence quantum yields of the probes in back-bound conformation were calculated. The molar ratio of probes in back-bound conformation was 0.70-0.96 at 30 degrees C and 0.40-0.73 at 60 degrees C, and the fluorescence quantum yield in back-bound conformation varied between 0.0020 and 0.077 at 30 degrees C, and 0.00065-0.029 at 60 degrees C. These data show that the variation in free-probe fluorescence depends mainly on the fluorescence quantum yield of the probe in back-bound conformation and to a much lesser extent on the tendency of the probe to adopt the back-bound conformation. With increasing temperature the free-probe fluorescence decreases owing to both reduced degree of back-binding and a decrease of the fluorescence quantum yield in back-bound conformation.  相似文献   

20.
When exposed to the intracellular environment fluorescent probes sensitive to pH exhibit changes of photophysical characteristics as a result of an interaction of the dye molecule with cell constituents such as proteins, lipids or nucleic acids. This effect is reflected in calibration curves different from those found with the same dye in pure buffer solutions. To study an interaction of the probe 5'(and 6')-carboxy-10-dimethylamino-3-hydroxy- spiro[7H-benzo[c]xanthene-7,1'(3H)-isobenzofuran]-3'-one (carboxy SNARF-1) with membrane lipids, we measured its fluorescence in model systems of large unilamellar vesicles (LUV) prepared by extrusion. When the dye was removed from the bulk solution by gel filtration the relative fluorescence intensity of the lipid-bound dye form was enhanced, showing a strong interaction of the dye molecule with LUV membrane lipids. Surprisingly, the dye molecules seem to be bound predominantly to the outer surface of the lipid bilayer. The same situation was found with small unilamellar vesicles prepared by sonication. This effect makes it difficult to use carboxy SNARF-1 for measurements of the internal pH in suspensions of liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号